FD.io VPP  v19.08-27-gf4dcae4
Vector Packet Processing
fib_path.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Cisco and/or its affiliates.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at:
6  *
7  * http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 
16 #include <vlib/vlib.h>
17 #include <vnet/vnet.h>
18 #include <vnet/ip/format.h>
19 #include <vnet/ip/ip.h>
20 #include <vnet/dpo/drop_dpo.h>
21 #include <vnet/dpo/receive_dpo.h>
23 #include <vnet/dpo/lookup_dpo.h>
26 #include <vnet/dpo/dvr_dpo.h>
27 #include <vnet/dpo/ip_null_dpo.h>
28 #include <vnet/dpo/classify_dpo.h>
29 #include <vnet/dpo/pw_cw.h>
30 
31 #include <vnet/adj/adj.h>
32 #include <vnet/adj/adj_mcast.h>
33 
34 #include <vnet/fib/fib_path.h>
35 #include <vnet/fib/fib_node.h>
36 #include <vnet/fib/fib_table.h>
37 #include <vnet/fib/fib_entry.h>
38 #include <vnet/fib/fib_path_list.h>
39 #include <vnet/fib/fib_internal.h>
40 #include <vnet/fib/fib_urpf_list.h>
41 #include <vnet/fib/mpls_fib.h>
42 #include <vnet/fib/fib_path_ext.h>
43 #include <vnet/udp/udp_encap.h>
44 #include <vnet/bier/bier_fmask.h>
45 #include <vnet/bier/bier_table.h>
46 #include <vnet/bier/bier_imp.h>
48 
49 /**
50  * Enurmeration of path types
51  */
52 typedef enum fib_path_type_t_ {
53  /**
54  * Marker. Add new types after this one.
55  */
57  /**
58  * Attached-nexthop. An interface and a nexthop are known.
59  */
61  /**
62  * attached. Only the interface is known.
63  */
65  /**
66  * recursive. Only the next-hop is known.
67  */
69  /**
70  * special. nothing is known. so we drop.
71  */
73  /**
74  * exclusive. user provided adj.
75  */
77  /**
78  * deag. Link to a lookup adj in the next table
79  */
81  /**
82  * interface receive.
83  */
85  /**
86  * Path resolves via a UDP encap object.
87  */
89  /**
90  * receive. it's for-us.
91  */
93  /**
94  * bier-imp. it's via a BIER imposition.
95  */
97  /**
98  * bier-fmask. it's via a BIER ECMP-table.
99  */
101  /**
102  * bier-fmask. it's via a BIER f-mask.
103  */
105  /**
106  * via a DVR.
107  */
109  /**
110  * Marker. Add new types before this one, then update it.
111  */
113 } __attribute__ ((packed)) fib_path_type_t;
114 
115 /**
116  * The maximum number of path_types
117  */
118 #define FIB_PATH_TYPE_MAX (FIB_PATH_TYPE_LAST + 1)
119 
120 #define FIB_PATH_TYPES { \
121  [FIB_PATH_TYPE_ATTACHED_NEXT_HOP] = "attached-nexthop", \
122  [FIB_PATH_TYPE_ATTACHED] = "attached", \
123  [FIB_PATH_TYPE_RECURSIVE] = "recursive", \
124  [FIB_PATH_TYPE_SPECIAL] = "special", \
125  [FIB_PATH_TYPE_EXCLUSIVE] = "exclusive", \
126  [FIB_PATH_TYPE_DEAG] = "deag", \
127  [FIB_PATH_TYPE_INTF_RX] = "intf-rx", \
128  [FIB_PATH_TYPE_UDP_ENCAP] = "udp-encap", \
129  [FIB_PATH_TYPE_RECEIVE] = "receive", \
130  [FIB_PATH_TYPE_BIER_IMP] = "bier-imp", \
131  [FIB_PATH_TYPE_BIER_TABLE] = "bier-table", \
132  [FIB_PATH_TYPE_BIER_FMASK] = "bier-fmask", \
133  [FIB_PATH_TYPE_DVR] = "dvr", \
134 }
135 
136 #define FOR_EACH_FIB_PATH_TYPE(_item) \
137  for (_item = FIB_PATH_TYPE_FIRST; \
138  _item <= FIB_PATH_TYPE_LAST; \
139  _item++)
140 
141 /**
142  * Enurmeration of path operational (i.e. derived) attributes
143  */
145  /**
146  * Marker. Add new types after this one.
147  */
149  /**
150  * The path forms part of a recursive loop.
151  */
153  /**
154  * The path is resolved
155  */
157  /**
158  * The path is attached, despite what the next-hop may say.
159  */
161  /**
162  * The path has become a permanent drop.
163  */
165  /**
166  * Marker. Add new types before this one, then update it.
167  */
169 } __attribute__ ((packed)) fib_path_oper_attribute_t;
170 
171 /**
172  * The maximum number of path operational attributes
173  */
174 #define FIB_PATH_OPER_ATTRIBUTE_MAX (FIB_PATH_OPER_ATTRIBUTE_LAST + 1)
175 
176 #define FIB_PATH_OPER_ATTRIBUTES { \
177  [FIB_PATH_OPER_ATTRIBUTE_RECURSIVE_LOOP] = "recursive-loop", \
178  [FIB_PATH_OPER_ATTRIBUTE_RESOLVED] = "resolved", \
179  [FIB_PATH_OPER_ATTRIBUTE_DROP] = "drop", \
180 }
181 
182 #define FOR_EACH_FIB_PATH_OPER_ATTRIBUTE(_item) \
183  for (_item = FIB_PATH_OPER_ATTRIBUTE_FIRST; \
184  _item <= FIB_PATH_OPER_ATTRIBUTE_LAST; \
185  _item++)
186 
187 /**
188  * Path flags from the attributes
189  */
196 } __attribute__ ((packed)) fib_path_oper_flags_t;
197 
198 /**
199  * A FIB path
200  */
201 typedef struct fib_path_t_ {
202  /**
203  * A path is a node in the FIB graph.
204  */
206 
207  /**
208  * The index of the path-list to which this path belongs
209  */
211 
212  /**
213  * This marks the start of the memory area used to hash
214  * the path
215  */
216  STRUCT_MARK(path_hash_start);
217 
218  /**
219  * Configuration Flags
220  */
222 
223  /**
224  * The type of the path. This is the selector for the union
225  */
226  fib_path_type_t fp_type;
227 
228  /**
229  * The protocol of the next-hop, i.e. the address family of the
230  * next-hop's address. We can't derive this from the address itself
231  * since the address can be all zeros
232  */
234 
235  /**
236  * UCMP [unnormalised] weigth
237  */
239 
240  /**
241  * A path preference. 0 is the best.
242  * Only paths of the best preference, that are 'up', are considered
243  * for forwarding.
244  */
246 
247  /**
248  * per-type union of the data required to resolve the path
249  */
250  union {
251  struct {
252  /**
253  * The next-hop
254  */
255  ip46_address_t fp_nh;
256  /**
257  * The interface
258  */
260  } attached_next_hop;
261  struct {
262  /**
263  * The interface
264  */
265  u32 fp_interface;
266  } attached;
267  struct {
268  union
269  {
270  /**
271  * The next-hop
272  */
273  ip46_address_t fp_ip;
274  struct {
275  /**
276  * The local label to resolve through.
277  */
279  /**
280  * The EOS bit of the resolving label
281  */
283  };
284  } fp_nh;
285  union {
286  /**
287  * The FIB table index in which to find the next-hop.
288  */
290  /**
291  * The BIER FIB the fmask is in
292  */
294  };
295  } recursive;
296  struct {
297  /**
298  * BIER FMask ID
299  */
301  } bier_fmask;
302  struct {
303  /**
304  * The BIER table's ID
305  */
307  } bier_table;
308  struct {
309  /**
310  * The BIER imposition object
311  * this is part of the path's key, since the index_t
312  * of an imposition object is the object's key.
313  */
315  } bier_imp;
316  struct {
317  /**
318  * The FIB index in which to perfom the next lookup
319  */
320  fib_node_index_t fp_tbl_id;
321  /**
322  * The RPF-ID to tag the packets with
323  */
325  } deag;
326  struct {
327  } special;
328  struct {
329  /**
330  * The user provided 'exclusive' DPO
331  */
333  } exclusive;
334  struct {
335  /**
336  * The interface on which the local address is configured
337  */
338  u32 fp_interface;
339  /**
340  * The next-hop
341  */
342  ip46_address_t fp_addr;
343  } receive;
344  struct {
345  /**
346  * The interface on which the packets will be input.
347  */
348  u32 fp_interface;
349  } intf_rx;
350  struct {
351  /**
352  * The UDP Encap object this path resolves through
353  */
355  } udp_encap;
356  struct {
357  /**
358  * The UDP Encap object this path resolves through
359  */
361  } classify;
362  struct {
363  /**
364  * The interface
365  */
366  u32 fp_interface;
367  } dvr;
368  };
369  STRUCT_MARK(path_hash_end);
370 
371  /**
372  * Memebers in this last section represent information that is
373  * dervied during resolution. It should not be copied to new paths
374  * nor compared.
375  */
376 
377  /**
378  * Operational Flags
379  */
380  fib_path_oper_flags_t fp_oper_flags;
381 
382  union {
383  /**
384  * the resolving via fib. not part of the union, since it it not part
385  * of the path's hash.
386  */
388  /**
389  * the resolving bier-table
390  */
392  /**
393  * the resolving bier-fmask
394  */
396  };
397 
398  /**
399  * The Data-path objects through which this path resolves for IP.
400  */
402 
403  /**
404  * the index of this path in the parent's child list.
405  */
407 } fib_path_t;
408 
409 /*
410  * Array of strings/names for the path types and attributes
411  */
412 static const char *fib_path_type_names[] = FIB_PATH_TYPES;
413 static const char *fib_path_oper_attribute_names[] = FIB_PATH_OPER_ATTRIBUTES;
414 static const char *fib_path_cfg_attribute_names[] = FIB_PATH_CFG_ATTRIBUTES;
415 
416 /*
417  * The memory pool from which we allocate all the paths
418  */
420 
421 /**
422  * the logger
423  */
425 
426 /*
427  * Debug macro
428  */
429 #define FIB_PATH_DBG(_p, _fmt, _args...) \
430 { \
431  vlib_log_debug (fib_path_logger, \
432  "[%U]: " _fmt, \
433  format_fib_path, fib_path_get_index(_p), 0, \
434  FIB_PATH_FORMAT_FLAGS_ONE_LINE, \
435  ##_args); \
436 }
437 
438 static fib_path_t *
440 {
441  return (pool_elt_at_index(fib_path_pool, index));
442 }
443 
444 static fib_node_index_t
446 {
447  return (path - fib_path_pool);
448 }
449 
450 static fib_node_t *
452 {
453  return ((fib_node_t*)fib_path_get(index));
454 }
455 
456 static fib_path_t*
458 {
460  return ((fib_path_t*)node);
461 }
462 
463 u8 *
464 format_fib_path (u8 * s, va_list * args)
465 {
466  fib_node_index_t path_index = va_arg (*args, fib_node_index_t);
467  u32 indent = va_arg (*args, u32);
469  vnet_main_t * vnm = vnet_get_main();
470  fib_path_oper_attribute_t oattr;
472  fib_path_t *path;
473  const char *eol;
474 
475  if (flags & FIB_PATH_FORMAT_FLAGS_ONE_LINE)
476  {
477  eol = "";
478  }
479  else
480  {
481  eol = "\n";
482  }
483 
484  path = fib_path_get(path_index);
485 
486  s = format (s, "%Upath:[%d] ", format_white_space, indent,
487  fib_path_get_index(path));
488  s = format (s, "pl-index:%d ", path->fp_pl_index);
489  s = format (s, "%U ", format_dpo_proto, path->fp_nh_proto);
490  s = format (s, "weight=%d ", path->fp_weight);
491  s = format (s, "pref=%d ", path->fp_preference);
492  s = format (s, "%s: ", fib_path_type_names[path->fp_type]);
493  if (FIB_PATH_OPER_FLAG_NONE != path->fp_oper_flags) {
494  s = format(s, " oper-flags:");
496  if ((1<<oattr) & path->fp_oper_flags) {
497  s = format (s, "%s,", fib_path_oper_attribute_names[oattr]);
498  }
499  }
500  }
501  if (FIB_PATH_CFG_FLAG_NONE != path->fp_cfg_flags) {
502  s = format(s, " cfg-flags:");
504  if ((1<<cattr) & path->fp_cfg_flags) {
505  s = format (s, "%s,", fib_path_cfg_attribute_names[cattr]);
506  }
507  }
508  }
509  if (!(flags & FIB_PATH_FORMAT_FLAGS_ONE_LINE))
510  s = format(s, "\n%U", format_white_space, indent+2);
511 
512  switch (path->fp_type)
513  {
515  s = format (s, "%U", format_ip46_address,
516  &path->attached_next_hop.fp_nh,
517  IP46_TYPE_ANY);
519  {
520  s = format (s, " if_index:%d", path->attached_next_hop.fp_interface);
521  }
522  else
523  {
524  s = format (s, " %U",
526  vnm,
528  vnm,
529  path->attached_next_hop.fp_interface));
531  path->attached_next_hop.fp_interface))
532  {
533  s = format (s, " (p2p)");
534  }
535  }
536  if (!dpo_id_is_valid(&path->fp_dpo))
537  {
538  s = format(s, "%s%Uunresolved", eol, format_white_space, indent+2);
539  }
540  else
541  {
542  s = format(s, "%s%U%U", eol,
543  format_white_space, indent,
545  &path->fp_dpo, 13);
546  }
547  break;
550  {
551  s = format (s, "if_index:%d", path->attached_next_hop.fp_interface);
552  }
553  else
554  {
555  s = format (s, " %U",
557  vnm,
559  vnm,
560  path->attached.fp_interface));
561  }
562  break;
564  if (DPO_PROTO_MPLS == path->fp_nh_proto)
565  {
566  s = format (s, "via %U %U",
568  path->recursive.fp_nh.fp_local_label,
570  path->recursive.fp_nh.fp_eos);
571  }
572  else
573  {
574  s = format (s, "via %U",
576  &path->recursive.fp_nh.fp_ip,
577  IP46_TYPE_ANY);
578  }
579  s = format (s, " in fib:%d",
580  path->recursive.fp_tbl_id,
581  path->fp_via_fib);
582  s = format (s, " via-fib:%d", path->fp_via_fib);
583  s = format (s, " via-dpo:[%U:%d]",
585  path->fp_dpo.dpoi_index);
586 
587  break;
589  s = format (s, "UDP-encap ID:%d", path->udp_encap.fp_udp_encap_id);
590  break;
592  s = format (s, "via bier-table:[%U}",
594  &path->bier_table.fp_bier_tbl);
595  s = format (s, " via-dpo:[%U:%d]",
597  path->fp_dpo.dpoi_index);
598  break;
600  s = format (s, "via-fmask:%d", path->bier_fmask.fp_bier_fmask);
601  s = format (s, " via-dpo:[%U:%d]",
603  path->fp_dpo.dpoi_index);
604  break;
606  s = format (s, "via %U", format_bier_imp,
607  path->bier_imp.fp_bier_imp, 0, BIER_SHOW_BRIEF);
608  break;
609  case FIB_PATH_TYPE_DVR:
610  s = format (s, " %U",
612  vnm,
614  vnm,
615  path->dvr.fp_interface));
616  break;
617  case FIB_PATH_TYPE_DEAG:
618  s = format (s, " %sfib-index:%d",
619  (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_RPF_ID ? "m" : ""),
620  path->deag.fp_tbl_id);
621  break;
626  if (dpo_id_is_valid(&path->fp_dpo))
627  {
628  s = format(s, "%U", format_dpo_id,
629  &path->fp_dpo, indent+2);
630  }
631  break;
632  }
633  return (s);
634 }
635 
636 /*
637  * fib_path_last_lock_gone
638  *
639  * We don't share paths, we share path lists, so the [un]lock functions
640  * are no-ops
641  */
642 static void
644 {
645  ASSERT(0);
646 }
647 
648 static const adj_index_t
650  vnet_link_t link)
651 {
653  path->attached_next_hop.fp_interface))
654  {
655  /*
656  * if the interface is p2p then the adj for the specific
657  * neighbour on that link will never exist. on p2p links
658  * the subnet address (the attached route) links to the
659  * auto-adj (see below), we want that adj here too.
660  */
662  link,
663  &zero_addr,
664  path->attached_next_hop.fp_interface));
665  }
666  else
667  {
669  link,
670  &path->attached_next_hop.fp_nh,
671  path->attached_next_hop.fp_interface));
672  }
673 }
674 
675 static void
677 {
678  /*
679  * resolve directly via the adjacnecy discribed by the
680  * interface and next-hop
681  */
682  dpo_set(&path->fp_dpo,
684  path->fp_nh_proto,
686  path,
688 
689  /*
690  * become a child of the adjacency so we receive updates
691  * when its rewrite changes
692  */
695  fib_path_get_index(path));
696 
698  path->attached_next_hop.fp_interface) ||
699  !adj_is_up(path->fp_dpo.dpoi_index))
700  {
702  }
703 }
704 
705 static const adj_index_t
707  vnet_link_t link)
708 {
710  path->attached.fp_interface))
711  {
712  /*
713  * point-2-point interfaces do not require a glean, since
714  * there is nothing to ARP. Install a rewrite/nbr adj instead
715  */
717  link,
718  &zero_addr,
719  path->attached.fp_interface));
720  }
721  else
722  {
724  link,
725  path->attached.fp_interface,
726  NULL));
727  }
728 }
729 
730 /*
731  * create of update the paths recursive adj
732  */
733 static void
736  dpo_id_t *dpo)
737 {
738  dpo_id_t via_dpo = DPO_INVALID;
739 
740  /*
741  * get the DPO to resolve through from the via-entry
742  */
744  fct,
745  &via_dpo);
746 
747 
748  /*
749  * hope for the best - clear if restrictions apply.
750  */
752 
753  /*
754  * Validate any recursion constraints and over-ride the via
755  * adj if not met
756  */
758  {
760  dpo_copy(&via_dpo, drop_dpo_get(path->fp_nh_proto));
761  }
763  {
764  /*
765  * the via FIB must be a host route.
766  * note the via FIB just added will always be a host route
767  * since it is an RR source added host route. So what we need to
768  * check is whether the route has other sources. If it does then
769  * some other source has added it as a host route. If it doesn't
770  * then it was added only here and inherits forwarding from a cover.
771  * the cover is not a host route.
772  * The RR source is the lowest priority source, so we check if it
773  * is the best. if it is there are no other sources.
774  */
776  {
778  dpo_copy(&via_dpo, drop_dpo_get(path->fp_nh_proto));
779 
780  /*
781  * PIC edge trigger. let the load-balance maps know
782  */
784  }
785  }
787  {
788  /*
789  * RR source entries inherit the flags from the cover, so
790  * we can check the via directly
791  */
793  {
795  dpo_copy(&via_dpo, drop_dpo_get(path->fp_nh_proto));
796 
797  /*
798  * PIC edge trigger. let the load-balance maps know
799  */
801  }
802  }
803  /*
804  * check for over-riding factors on the FIB entry itself
805  */
806  if (!fib_entry_is_resolved(path->fp_via_fib))
807  {
809  dpo_copy(&via_dpo, drop_dpo_get(path->fp_nh_proto));
810 
811  /*
812  * PIC edge trigger. let the load-balance maps know
813  */
815  }
816 
817  /*
818  * If this path is contributing a drop, then it's not resolved
819  */
820  if (dpo_is_drop(&via_dpo) || load_balance_is_drop(&via_dpo))
821  {
823  }
824 
825  /*
826  * update the path's contributed DPO
827  */
828  dpo_copy(dpo, &via_dpo);
829 
830  FIB_PATH_DBG(path, "recursive update:");
831 
832  dpo_reset(&via_dpo);
833 }
834 
835 /*
836  * re-evaulate the forwarding state for a via fmask path
837  */
838 static void
840  dpo_id_t *dpo)
841 {
842  bier_fmask_contribute_forwarding(path->bier_fmask.fp_bier_fmask, dpo);
843 
844  /*
845  * if we are stakcing on the drop, then the path is not resolved
846  */
847  if (dpo_is_drop(dpo))
848  {
850  }
851  else
852  {
854  }
855 }
856 
857 /*
858  * fib_path_is_permanent_drop
859  *
860  * Return !0 if the path is configured to permanently drop,
861  * despite other attributes.
862  */
863 static int
865 {
866  return ((path->fp_cfg_flags & FIB_PATH_CFG_FLAG_DROP) ||
868 }
869 
870 /*
871  * fib_path_unresolve
872  *
873  * Remove our dependency on the resolution target
874  */
875 static void
877 {
878  /*
879  * the forced drop path does not need unresolving
880  */
881  if (fib_path_is_permanent_drop(path))
882  {
883  return;
884  }
885 
886  switch (path->fp_type)
887  {
889  if (FIB_NODE_INDEX_INVALID != path->fp_via_fib)
890  {
892  path->fp_sibling);
895  FIB_SOURCE_RR);
896  fib_table_unlock(path->recursive.fp_tbl_id,
898  FIB_SOURCE_RR);
900  }
901  break;
904  path->fp_sibling);
905  break;
908  break;
911  break;
914  path->fp_sibling);
916  break;
919  path->fp_sibling);
921  break;
924  break;
926  dpo_reset(&path->exclusive.fp_ex_dpo);
927  break;
931  case FIB_PATH_TYPE_DEAG:
932  case FIB_PATH_TYPE_DVR:
933  /*
934  * these hold only the path's DPO, which is reset below.
935  */
936  break;
937  }
938 
939  /*
940  * release the adj we were holding and pick up the
941  * drop just in case.
942  */
943  dpo_reset(&path->fp_dpo);
945 
946  return;
947 }
948 
951 {
952  if (DPO_PROTO_MPLS == path->fp_nh_proto)
953  {
954  if (FIB_PATH_TYPE_RECURSIVE == path->fp_type &&
955  MPLS_EOS == path->recursive.fp_nh.fp_eos)
956  {
958  }
959  else
960  {
962  }
963  }
964  else
965  {
967  }
968 }
969 
970 /*
971  * fib_path_back_walk_notify
972  *
973  * A back walk has reach this path.
974  */
978 {
979  fib_path_t *path;
980 
981  path = fib_path_from_fib_node(node);
982 
983  FIB_PATH_DBG(path, "bw:%U",
985 
986  switch (path->fp_type)
987  {
990  {
991  /*
992  * modify the recursive adjacency to use the new forwarding
993  * of the via-fib.
994  * this update is visible to packets in flight in the DP.
995  */
997  path,
999  &path->fp_dpo);
1000  }
1003  {
1004  /*
1005  * ADJ updates (complete<->incomplete) do not need to propagate to
1006  * recursive entries.
1007  * The only reason its needed as far back as here, is that the adj
1008  * and the incomplete adj are a different DPO type, so the LBs need
1009  * to re-stack.
1010  * If this walk was quashed in the fib_entry, then any non-fib_path
1011  * children (like tunnels that collapse out the LB when they stack)
1012  * would not see the update.
1013  */
1014  return (FIB_NODE_BACK_WALK_CONTINUE);
1015  }
1016  break;
1019  {
1020  /*
1021  * update to use the BIER fmask's new forwading
1022  */
1023  fib_path_bier_fmask_update(path, &path->fp_dpo);
1024  }
1027  {
1028  /*
1029  * ADJ updates (complete<->incomplete) do not need to propagate to
1030  * recursive entries.
1031  * The only reason its needed as far back as here, is that the adj
1032  * and the incomplete adj are a different DPO type, so the LBs need
1033  * to re-stack.
1034  * If this walk was quashed in the fib_entry, then any non-fib_path
1035  * children (like tunnels that collapse out the LB when they stack)
1036  * would not see the update.
1037  */
1038  return (FIB_NODE_BACK_WALK_CONTINUE);
1039  }
1040  break;
1042  /*
1043 FIXME comment
1044  * ADJ_UPDATE backwalk pass silently through here and up to
1045  * the path-list when the multipath adj collapse occurs.
1046  * The reason we do this is that the assumtption is that VPP
1047  * runs in an environment where the Control-Plane is remote
1048  * and hence reacts slowly to link up down. In order to remove
1049  * this down link from the ECMP set quickly, we back-walk.
1050  * VPP also has dedicated CPUs, so we are not stealing resources
1051  * from the CP to do so.
1052  */
1054  {
1056  {
1057  /*
1058  * alreday resolved. no need to walk back again
1059  */
1060  return (FIB_NODE_BACK_WALK_CONTINUE);
1061  }
1063  }
1065  {
1067  {
1068  /*
1069  * alreday unresolved. no need to walk back again
1070  */
1071  return (FIB_NODE_BACK_WALK_CONTINUE);
1072  }
1074  }
1076  {
1077  /*
1078  * The interface this path resolves through has been deleted.
1079  * This will leave the path in a permanent drop state. The route
1080  * needs to be removed and readded (and hence the path-list deleted)
1081  * before it can forward again.
1082  */
1083  fib_path_unresolve(path);
1085  }
1087  {
1088  /*
1089  * restack the DPO to pick up the correct DPO sub-type
1090  */
1091  uword if_is_up;
1092  adj_index_t ai;
1093 
1094  if_is_up = vnet_sw_interface_is_up(
1095  vnet_get_main(),
1096  path->attached_next_hop.fp_interface);
1097 
1099  path,
1101 
1103  if (if_is_up && adj_is_up(ai))
1104  {
1106  }
1107 
1108  dpo_set(&path->fp_dpo, DPO_ADJACENCY, path->fp_nh_proto, ai);
1109  adj_unlock(ai);
1110 
1111  if (!if_is_up)
1112  {
1113  /*
1114  * If the interface is not up there is no reason to walk
1115  * back to children. if we did they would only evalute
1116  * that this path is unresolved and hence it would
1117  * not contribute the adjacency - so it would be wasted
1118  * CPU time.
1119  */
1120  return (FIB_NODE_BACK_WALK_CONTINUE);
1121  }
1122  }
1124  {
1126  {
1127  /*
1128  * alreday unresolved. no need to walk back again
1129  */
1130  return (FIB_NODE_BACK_WALK_CONTINUE);
1131  }
1132  /*
1133  * the adj has gone down. the path is no longer resolved.
1134  */
1136  }
1137  break;
1139  case FIB_PATH_TYPE_DVR:
1140  /*
1141  * FIXME; this could schedule a lower priority walk, since attached
1142  * routes are not usually in ECMP configurations so the backwalk to
1143  * the FIB entry does not need to be high priority
1144  */
1146  {
1148  }
1150  {
1152  }
1154  {
1155  fib_path_unresolve(path);
1157  }
1158  break;
1160  {
1161  dpo_id_t via_dpo = DPO_INVALID;
1162 
1163  /*
1164  * hope for the best - clear if restrictions apply.
1165  */
1167 
1168  udp_encap_contribute_forwarding(path->udp_encap.fp_udp_encap_id,
1169  path->fp_nh_proto,
1170  &via_dpo);
1171  /*
1172  * If this path is contributing a drop, then it's not resolved
1173  */
1174  if (dpo_is_drop(&via_dpo) || load_balance_is_drop(&via_dpo))
1175  {
1177  }
1178 
1179  /*
1180  * update the path's contributed DPO
1181  */
1182  dpo_copy(&path->fp_dpo, &via_dpo);
1183  dpo_reset(&via_dpo);
1184  break;
1185  }
1186  case FIB_PATH_TYPE_INTF_RX:
1187  ASSERT(0);
1188  case FIB_PATH_TYPE_DEAG:
1189  /*
1190  * FIXME When VRF delete is allowed this will need a poke.
1191  */
1192  case FIB_PATH_TYPE_SPECIAL:
1193  case FIB_PATH_TYPE_RECEIVE:
1197  /*
1198  * these path types have no parents. so to be
1199  * walked from one is unexpected.
1200  */
1201  ASSERT(0);
1202  break;
1203  }
1204 
1205  /*
1206  * propagate the backwalk further to the path-list
1207  */
1209 
1210  return (FIB_NODE_BACK_WALK_CONTINUE);
1211 }
1212 
1213 static void
1215 {
1216  fib_show_memory_usage("Path",
1217  pool_elts(fib_path_pool),
1218  pool_len(fib_path_pool),
1219  sizeof(fib_path_t));
1220 }
1221 
1222 /*
1223  * The FIB path's graph node virtual function table
1224  */
1225 static const fib_node_vft_t fib_path_vft = {
1227  .fnv_last_lock = fib_path_last_lock_gone,
1228  .fnv_back_walk = fib_path_back_walk_notify,
1229  .fnv_mem_show = fib_path_memory_show,
1230 };
1231 
1232 static fib_path_cfg_flags_t
1234 {
1236 
1237  if (rpath->frp_flags & FIB_ROUTE_PATH_POP_PW_CW)
1238  cfg_flags |= FIB_PATH_CFG_FLAG_POP_PW_CW;
1240  cfg_flags |= FIB_PATH_CFG_FLAG_RESOLVE_HOST;
1243  if (rpath->frp_flags & FIB_ROUTE_PATH_LOCAL)
1244  cfg_flags |= FIB_PATH_CFG_FLAG_LOCAL;
1245  if (rpath->frp_flags & FIB_ROUTE_PATH_ATTACHED)
1246  cfg_flags |= FIB_PATH_CFG_FLAG_ATTACHED;
1247  if (rpath->frp_flags & FIB_ROUTE_PATH_INTF_RX)
1248  cfg_flags |= FIB_PATH_CFG_FLAG_INTF_RX;
1249  if (rpath->frp_flags & FIB_ROUTE_PATH_RPF_ID)
1250  cfg_flags |= FIB_PATH_CFG_FLAG_RPF_ID;
1251  if (rpath->frp_flags & FIB_ROUTE_PATH_EXCLUSIVE)
1252  cfg_flags |= FIB_PATH_CFG_FLAG_EXCLUSIVE;
1253  if (rpath->frp_flags & FIB_ROUTE_PATH_DROP)
1254  cfg_flags |= FIB_PATH_CFG_FLAG_DROP;
1256  cfg_flags |= FIB_PATH_CFG_FLAG_DEAG_SRC;
1258  cfg_flags |= FIB_PATH_CFG_FLAG_ICMP_UNREACH;
1260  cfg_flags |= FIB_PATH_CFG_FLAG_ICMP_PROHIBIT;
1261 
1262  return (cfg_flags);
1263 }
1264 
1265 /*
1266  * fib_path_create
1267  *
1268  * Create and initialise a new path object.
1269  * return the index of the path.
1270  */
1273  const fib_route_path_t *rpath)
1274 {
1275  fib_path_t *path;
1276 
1277  pool_get(fib_path_pool, path);
1278  clib_memset(path, 0, sizeof(*path));
1279 
1280  fib_node_init(&path->fp_node,
1282 
1283  dpo_reset(&path->fp_dpo);
1284  path->fp_pl_index = pl_index;
1285  path->fp_nh_proto = rpath->frp_proto;
1287  path->fp_weight = rpath->frp_weight;
1288  if (0 == path->fp_weight)
1289  {
1290  /*
1291  * a weight of 0 is a meaningless value. We could either reject it, and thus force
1292  * clients to always use 1, or we can accept it and fixup approrpiately.
1293  */
1294  path->fp_weight = 1;
1295  }
1296  path->fp_preference = rpath->frp_preference;
1298 
1299  /*
1300  * deduce the path's tpye from the parementers and save what is needed.
1301  */
1303  {
1305  path->receive.fp_interface = rpath->frp_sw_if_index;
1306  path->receive.fp_addr = rpath->frp_addr;
1307  }
1308  else if (rpath->frp_flags & FIB_ROUTE_PATH_UDP_ENCAP)
1309  {
1311  path->udp_encap.fp_udp_encap_id = rpath->frp_udp_encap_id;
1312  }
1313  else if (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_INTF_RX)
1314  {
1316  path->intf_rx.fp_interface = rpath->frp_sw_if_index;
1317  }
1318  else if (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_RPF_ID)
1319  {
1320  path->fp_type = FIB_PATH_TYPE_DEAG;
1321  path->deag.fp_tbl_id = rpath->frp_fib_index;
1322  path->deag.fp_rpf_id = rpath->frp_rpf_id;
1323  }
1324  else if (rpath->frp_flags & FIB_ROUTE_PATH_BIER_FMASK)
1325  {
1327  path->bier_fmask.fp_bier_fmask = rpath->frp_bier_fmask;
1328  }
1329  else if (rpath->frp_flags & FIB_ROUTE_PATH_BIER_IMP)
1330  {
1332  path->bier_imp.fp_bier_imp = rpath->frp_bier_imp;
1333  }
1334  else if (rpath->frp_flags & FIB_ROUTE_PATH_BIER_TABLE)
1335  {
1337  path->bier_table.fp_bier_tbl = rpath->frp_bier_tbl;
1338  }
1339  else if (rpath->frp_flags & FIB_ROUTE_PATH_DEAG)
1340  {
1341  path->fp_type = FIB_PATH_TYPE_DEAG;
1342  path->deag.fp_tbl_id = rpath->frp_fib_index;
1343  }
1344  else if (rpath->frp_flags & FIB_ROUTE_PATH_DVR)
1345  {
1346  path->fp_type = FIB_PATH_TYPE_DVR;
1347  path->dvr.fp_interface = rpath->frp_sw_if_index;
1348  }
1349  else if (rpath->frp_flags & FIB_ROUTE_PATH_EXCLUSIVE)
1350  {
1352  dpo_copy(&path->exclusive.fp_ex_dpo, &rpath->dpo);
1353  }
1354  else if ((path->fp_cfg_flags & FIB_PATH_CFG_FLAG_ICMP_PROHIBIT) ||
1356  {
1358  }
1359  else if ((path->fp_cfg_flags & FIB_PATH_CFG_FLAG_CLASSIFY))
1360  {
1362  path->classify.fp_classify_table_id = rpath->frp_classify_table_id;
1363  }
1364  else if (~0 != rpath->frp_sw_if_index)
1365  {
1366  if (ip46_address_is_zero(&rpath->frp_addr))
1367  {
1369  path->attached.fp_interface = rpath->frp_sw_if_index;
1370  }
1371  else
1372  {
1374  path->attached_next_hop.fp_interface = rpath->frp_sw_if_index;
1375  path->attached_next_hop.fp_nh = rpath->frp_addr;
1376  }
1377  }
1378  else
1379  {
1380  if (ip46_address_is_zero(&rpath->frp_addr))
1381  {
1382  if (~0 == rpath->frp_fib_index)
1383  {
1385  }
1386  else
1387  {
1388  path->fp_type = FIB_PATH_TYPE_DEAG;
1389  path->deag.fp_tbl_id = rpath->frp_fib_index;
1390  path->deag.fp_rpf_id = ~0;
1391  }
1392  }
1393  else
1394  {
1396  if (DPO_PROTO_MPLS == path->fp_nh_proto)
1397  {
1398  path->recursive.fp_nh.fp_local_label = rpath->frp_local_label;
1399  path->recursive.fp_nh.fp_eos = rpath->frp_eos;
1400  }
1401  else
1402  {
1403  path->recursive.fp_nh.fp_ip = rpath->frp_addr;
1404  }
1405  path->recursive.fp_tbl_id = rpath->frp_fib_index;
1406  }
1407  }
1408 
1409  FIB_PATH_DBG(path, "create");
1410 
1411  return (fib_path_get_index(path));
1412 }
1413 
1414 /*
1415  * fib_path_create_special
1416  *
1417  * Create and initialise a new path object.
1418  * return the index of the path.
1419  */
1422  dpo_proto_t nh_proto,
1424  const dpo_id_t *dpo)
1425 {
1426  fib_path_t *path;
1427 
1428  pool_get(fib_path_pool, path);
1429  clib_memset(path, 0, sizeof(*path));
1430 
1431  fib_node_init(&path->fp_node,
1433  dpo_reset(&path->fp_dpo);
1434 
1435  path->fp_pl_index = pl_index;
1436  path->fp_weight = 1;
1437  path->fp_preference = 0;
1438  path->fp_nh_proto = nh_proto;
1440  path->fp_cfg_flags = flags;
1441 
1442  if (FIB_PATH_CFG_FLAG_DROP & flags)
1443  {
1445  }
1446  else if (FIB_PATH_CFG_FLAG_LOCAL & flags)
1447  {
1449  path->attached.fp_interface = FIB_NODE_INDEX_INVALID;
1450  }
1451  else
1452  {
1454  ASSERT(NULL != dpo);
1455  dpo_copy(&path->exclusive.fp_ex_dpo, dpo);
1456  }
1457 
1458  return (fib_path_get_index(path));
1459 }
1460 
1461 /*
1462  * fib_path_copy
1463  *
1464  * Copy a path. return index of new path.
1465  */
1468  fib_node_index_t path_list_index)
1469 {
1470  fib_path_t *path, *orig_path;
1471 
1472  pool_get(fib_path_pool, path);
1473 
1474  orig_path = fib_path_get(path_index);
1475  ASSERT(NULL != orig_path);
1476 
1477  memcpy(path, orig_path, sizeof(*path));
1478 
1479  FIB_PATH_DBG(path, "create-copy:%d", path_index);
1480 
1481  /*
1482  * reset the dynamic section
1483  */
1486  path->fp_pl_index = path_list_index;
1488  clib_memset(&path->fp_dpo, 0, sizeof(path->fp_dpo));
1489  dpo_reset(&path->fp_dpo);
1490 
1491  return (fib_path_get_index(path));
1492 }
1493 
1494 /*
1495  * fib_path_destroy
1496  *
1497  * destroy a path that is no longer required
1498  */
1499 void
1501 {
1502  fib_path_t *path;
1503 
1504  path = fib_path_get(path_index);
1505 
1506  ASSERT(NULL != path);
1507  FIB_PATH_DBG(path, "destroy");
1508 
1509  fib_path_unresolve(path);
1510 
1511  fib_node_deinit(&path->fp_node);
1512  pool_put(fib_path_pool, path);
1513 }
1514 
1515 /*
1516  * fib_path_destroy
1517  *
1518  * destroy a path that is no longer required
1519  */
1520 uword
1522 {
1523  fib_path_t *path;
1524 
1525  path = fib_path_get(path_index);
1526 
1527  return (hash_memory(STRUCT_MARK_PTR(path, path_hash_start),
1528  (STRUCT_OFFSET_OF(fib_path_t, path_hash_end) -
1529  STRUCT_OFFSET_OF(fib_path_t, path_hash_start)),
1530  0));
1531 }
1532 
1533 /*
1534  * fib_path_cmp_i
1535  *
1536  * Compare two paths for equivalence.
1537  */
1538 static int
1540  const fib_path_t *path2)
1541 {
1542  int res;
1543 
1544  res = 1;
1545 
1546  /*
1547  * paths of different types and protocol are not equal.
1548  * different weights and/or preference only are the same path.
1549  */
1550  if (path1->fp_type != path2->fp_type)
1551  {
1552  res = (path1->fp_type - path2->fp_type);
1553  }
1554  else if (path1->fp_nh_proto != path2->fp_nh_proto)
1555  {
1556  res = (path1->fp_nh_proto - path2->fp_nh_proto);
1557  }
1558  else
1559  {
1560  /*
1561  * both paths are of the same type.
1562  * consider each type and its attributes in turn.
1563  */
1564  switch (path1->fp_type)
1565  {
1567  res = ip46_address_cmp(&path1->attached_next_hop.fp_nh,
1568  &path2->attached_next_hop.fp_nh);
1569  if (0 == res) {
1570  res = (path1->attached_next_hop.fp_interface -
1571  path2->attached_next_hop.fp_interface);
1572  }
1573  break;
1575  res = (path1->attached.fp_interface -
1576  path2->attached.fp_interface);
1577  break;
1579  res = ip46_address_cmp(&path1->recursive.fp_nh,
1580  &path2->recursive.fp_nh);
1581 
1582  if (0 == res)
1583  {
1584  res = (path1->recursive.fp_tbl_id - path2->recursive.fp_tbl_id);
1585  }
1586  break;
1588  res = (path1->bier_fmask.fp_bier_fmask -
1589  path2->bier_fmask.fp_bier_fmask);
1590  break;
1592  res = (path1->bier_imp.fp_bier_imp -
1593  path2->bier_imp.fp_bier_imp);
1594  break;
1596  res = bier_table_id_cmp(&path1->bier_table.fp_bier_tbl,
1597  &path2->bier_table.fp_bier_tbl);
1598  break;
1599  case FIB_PATH_TYPE_DEAG:
1600  res = (path1->deag.fp_tbl_id - path2->deag.fp_tbl_id);
1601  if (0 == res)
1602  {
1603  res = (path1->deag.fp_rpf_id - path2->deag.fp_rpf_id);
1604  }
1605  break;
1606  case FIB_PATH_TYPE_INTF_RX:
1607  res = (path1->intf_rx.fp_interface - path2->intf_rx.fp_interface);
1608  break;
1610  res = (path1->udp_encap.fp_udp_encap_id - path2->udp_encap.fp_udp_encap_id);
1611  break;
1612  case FIB_PATH_TYPE_DVR:
1613  res = (path1->dvr.fp_interface - path2->dvr.fp_interface);
1614  break;
1616  res = dpo_cmp(&path1->exclusive.fp_ex_dpo, &path2->exclusive.fp_ex_dpo);
1617  break;
1618  case FIB_PATH_TYPE_SPECIAL:
1619  case FIB_PATH_TYPE_RECEIVE:
1620  res = 0;
1621  break;
1622  }
1623  }
1624  return (res);
1625 }
1626 
1627 /*
1628  * fib_path_cmp_for_sort
1629  *
1630  * Compare two paths for equivalence. Used during path sorting.
1631  * As usual 0 means equal.
1632  */
1633 int
1635  void * v2)
1636 {
1637  fib_node_index_t *pi1 = v1, *pi2 = v2;
1638  fib_path_t *path1, *path2;
1639 
1640  path1 = fib_path_get(*pi1);
1641  path2 = fib_path_get(*pi2);
1642 
1643  /*
1644  * when sorting paths we want the highest preference paths
1645  * first, so that the choices set built is in prefernce order
1646  */
1647  if (path1->fp_preference != path2->fp_preference)
1648  {
1649  return (path1->fp_preference - path2->fp_preference);
1650  }
1651 
1652  return (fib_path_cmp_i(path1, path2));
1653 }
1654 
1655 /*
1656  * fib_path_cmp
1657  *
1658  * Compare two paths for equivalence.
1659  */
1660 int
1662  fib_node_index_t pi2)
1663 {
1664  fib_path_t *path1, *path2;
1665 
1666  path1 = fib_path_get(pi1);
1667  path2 = fib_path_get(pi2);
1668 
1669  return (fib_path_cmp_i(path1, path2));
1670 }
1671 
1672 int
1674  const fib_route_path_t *rpath)
1675 {
1676  fib_path_t *path;
1677  int res;
1678 
1679  path = fib_path_get(path_index);
1680 
1681  res = 1;
1682 
1683  if (path->fp_weight != rpath->frp_weight)
1684  {
1685  res = (path->fp_weight - rpath->frp_weight);
1686  }
1687  else
1688  {
1689  /*
1690  * both paths are of the same type.
1691  * consider each type and its attributes in turn.
1692  */
1693  switch (path->fp_type)
1694  {
1696  res = ip46_address_cmp(&path->attached_next_hop.fp_nh,
1697  &rpath->frp_addr);
1698  if (0 == res)
1699  {
1700  res = (path->attached_next_hop.fp_interface -
1701  rpath->frp_sw_if_index);
1702  }
1703  break;
1705  res = (path->attached.fp_interface - rpath->frp_sw_if_index);
1706  break;
1708  if (DPO_PROTO_MPLS == path->fp_nh_proto)
1709  {
1710  res = path->recursive.fp_nh.fp_local_label - rpath->frp_local_label;
1711 
1712  if (res == 0)
1713  {
1714  res = path->recursive.fp_nh.fp_eos - rpath->frp_eos;
1715  }
1716  }
1717  else
1718  {
1719  res = ip46_address_cmp(&path->recursive.fp_nh.fp_ip,
1720  &rpath->frp_addr);
1721  }
1722 
1723  if (0 == res)
1724  {
1725  res = (path->recursive.fp_tbl_id - rpath->frp_fib_index);
1726  }
1727  break;
1729  res = (path->bier_fmask.fp_bier_fmask - rpath->frp_bier_fmask);
1730  break;
1732  res = (path->bier_imp.fp_bier_imp - rpath->frp_bier_imp);
1733  break;
1735  res = bier_table_id_cmp(&path->bier_table.fp_bier_tbl,
1736  &rpath->frp_bier_tbl);
1737  break;
1738  case FIB_PATH_TYPE_INTF_RX:
1739  res = (path->intf_rx.fp_interface - rpath->frp_sw_if_index);
1740  break;
1742  res = (path->udp_encap.fp_udp_encap_id - rpath->frp_udp_encap_id);
1743  break;
1744  case FIB_PATH_TYPE_DEAG:
1745  res = (path->deag.fp_tbl_id - rpath->frp_fib_index);
1746  if (0 == res)
1747  {
1748  res = (path->deag.fp_rpf_id - rpath->frp_rpf_id);
1749  }
1750  break;
1751  case FIB_PATH_TYPE_DVR:
1752  res = (path->dvr.fp_interface - rpath->frp_sw_if_index);
1753  break;
1755  res = dpo_cmp(&path->exclusive.fp_ex_dpo, &rpath->dpo);
1756  break;
1757  case FIB_PATH_TYPE_RECEIVE:
1758  if (rpath->frp_flags & FIB_ROUTE_PATH_LOCAL)
1759  {
1760  res = 0;
1761  }
1762  else
1763  {
1764  res = 1;
1765  }
1766  break;
1767  case FIB_PATH_TYPE_SPECIAL:
1768  res = 0;
1769  break;
1770  }
1771  }
1772  return (res);
1773 }
1774 
1775 /*
1776  * fib_path_recursive_loop_detect
1777  *
1778  * A forward walk of the FIB object graph to detect for a cycle/loop. This
1779  * walk is initiated when an entry is linking to a new path list or from an old.
1780  * The entry vector passed contains all the FIB entrys that are children of this
1781  * path (it is all the entries encountered on the walk so far). If this vector
1782  * contains the entry this path resolve via, then a loop is about to form.
1783  * The loop must be allowed to form, since we need the dependencies in place
1784  * so that we can track when the loop breaks.
1785  * However, we MUST not produce a loop in the forwarding graph (else packets
1786  * would loop around the switch path until the loop breaks), so we mark recursive
1787  * paths as looped so that they do not contribute forwarding information.
1788  * By marking the path as looped, an etry such as;
1789  * X/Y
1790  * via a.a.a.a (looped)
1791  * via b.b.b.b (not looped)
1792  * can still forward using the info provided by b.b.b.b only
1793  */
1794 int
1796  fib_node_index_t **entry_indicies)
1797 {
1798  fib_path_t *path;
1799 
1800  path = fib_path_get(path_index);
1801 
1802  /*
1803  * the forced drop path is never looped, cos it is never resolved.
1804  */
1805  if (fib_path_is_permanent_drop(path))
1806  {
1807  return (0);
1808  }
1809 
1810  switch (path->fp_type)
1811  {
1813  {
1814  fib_node_index_t *entry_index, *entries;
1815  int looped = 0;
1816  entries = *entry_indicies;
1817 
1818  vec_foreach(entry_index, entries) {
1819  if (*entry_index == path->fp_via_fib)
1820  {
1821  /*
1822  * the entry that is about to link to this path-list (or
1823  * one of this path-list's children) is the same entry that
1824  * this recursive path resolves through. this is a cycle.
1825  * abort the walk.
1826  */
1827  looped = 1;
1828  break;
1829  }
1830  }
1831 
1832  if (looped)
1833  {
1834  FIB_PATH_DBG(path, "recursive loop formed");
1836 
1837  dpo_copy(&path->fp_dpo, drop_dpo_get(path->fp_nh_proto));
1838  }
1839  else
1840  {
1841  /*
1842  * no loop here yet. keep forward walking the graph.
1843  */
1844  if (fib_entry_recursive_loop_detect(path->fp_via_fib, entry_indicies))
1845  {
1846  FIB_PATH_DBG(path, "recursive loop formed");
1848  }
1849  else
1850  {
1851  FIB_PATH_DBG(path, "recursive loop cleared");
1853  }
1854  }
1855  break;
1856  }
1860  entry_indicies))
1861  {
1862  FIB_PATH_DBG(path, "recursive loop formed");
1864  }
1865  else
1866  {
1867  FIB_PATH_DBG(path, "recursive loop cleared");
1869  }
1870  break;
1871  case FIB_PATH_TYPE_SPECIAL:
1872  case FIB_PATH_TYPE_DEAG:
1873  case FIB_PATH_TYPE_DVR:
1874  case FIB_PATH_TYPE_RECEIVE:
1875  case FIB_PATH_TYPE_INTF_RX:
1881  /*
1882  * these path types cannot be part of a loop, since they are the leaves
1883  * of the graph.
1884  */
1885  break;
1886  }
1887 
1888  return (fib_path_is_looped(path_index));
1889 }
1890 
1891 int
1893 {
1894  fib_path_t *path;
1895 
1896  path = fib_path_get(path_index);
1897 
1898  /*
1899  * hope for the best.
1900  */
1902 
1903  /*
1904  * the forced drop path resolves via the drop adj
1905  */
1906  if (fib_path_is_permanent_drop(path))
1907  {
1908  dpo_copy(&path->fp_dpo, drop_dpo_get(path->fp_nh_proto));
1910  return (fib_path_is_resolved(path_index));
1911  }
1912 
1913  switch (path->fp_type)
1914  {
1917  break;
1919  {
1920  dpo_id_t tmp = DPO_INVALID;
1921 
1922  /*
1923  * path->attached.fp_interface
1924  */
1926  path->attached.fp_interface))
1927  {
1929  }
1930  dpo_set(&tmp,
1931  DPO_ADJACENCY,
1932  path->fp_nh_proto,
1934  dpo_proto_to_link(path->fp_nh_proto)));
1935 
1936  /*
1937  * re-fetch after possible mem realloc
1938  */
1939  path = fib_path_get(path_index);
1940  dpo_copy(&path->fp_dpo, &tmp);
1941 
1942  /*
1943  * become a child of the adjacency so we receive updates
1944  * when the interface state changes
1945  */
1946  path->fp_sibling = adj_child_add(path->fp_dpo.dpoi_index,
1948  fib_path_get_index(path));
1949  dpo_reset(&tmp);
1950  break;
1951  }
1953  {
1954  /*
1955  * Create a RR source entry in the table for the address
1956  * that this path recurses through.
1957  * This resolve action is recursive, hence we may create
1958  * more paths in the process. more creates mean maybe realloc
1959  * of this path.
1960  */
1961  fib_node_index_t fei;
1962  fib_prefix_t pfx;
1963 
1965 
1966  if (DPO_PROTO_MPLS == path->fp_nh_proto)
1967  {
1968  fib_prefix_from_mpls_label(path->recursive.fp_nh.fp_local_label,
1969  path->recursive.fp_nh.fp_eos,
1970  &pfx);
1971  }
1972  else
1973  {
1974  fib_prefix_from_ip46_addr(&path->recursive.fp_nh.fp_ip, &pfx);
1975  }
1976 
1977  fib_table_lock(path->recursive.fp_tbl_id,
1979  FIB_SOURCE_RR);
1980  fei = fib_table_entry_special_add(path->recursive.fp_tbl_id,
1981  &pfx,
1982  FIB_SOURCE_RR,
1984 
1985  path = fib_path_get(path_index);
1986  path->fp_via_fib = fei;
1987 
1988  /*
1989  * become a dependent child of the entry so the path is
1990  * informed when the forwarding for the entry changes.
1991  */
1994  fib_path_get_index(path));
1995 
1996  /*
1997  * create and configure the IP DPO
1998  */
2000  path,
2001  fib_path_to_chain_type(path),
2002  &path->fp_dpo);
2003 
2004  break;
2005  }
2007  {
2008  /*
2009  * become a dependent child of the entry so the path is
2010  * informed when the forwarding for the entry changes.
2011  */
2012  path->fp_sibling = bier_fmask_child_add(path->bier_fmask.fp_bier_fmask,
2014  fib_path_get_index(path));
2015 
2016  path->fp_via_bier_fmask = path->bier_fmask.fp_bier_fmask;
2017  fib_path_bier_fmask_update(path, &path->fp_dpo);
2018 
2019  break;
2020  }
2022  bier_imp_lock(path->bier_imp.fp_bier_imp);
2023  bier_imp_contribute_forwarding(path->bier_imp.fp_bier_imp,
2024  DPO_PROTO_IP4,
2025  &path->fp_dpo);
2026  break;
2028  {
2029  /*
2030  * Find/create the BIER table to link to
2031  */
2033 
2034  path->fp_via_bier_tbl =
2035  bier_table_ecmp_create_and_lock(&path->bier_table.fp_bier_tbl);
2036 
2038  &path->fp_dpo);
2039  break;
2040  }
2041  case FIB_PATH_TYPE_SPECIAL:
2043  {
2046  &path->fp_dpo);
2047  }
2049  {
2052  &path->fp_dpo);
2053  }
2054  else if (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_CLASSIFY)
2055  {
2056  dpo_set (&path->fp_dpo, DPO_CLASSIFY,
2057  path->fp_nh_proto,
2059  path->classify.fp_classify_table_id));
2060  }
2061  else
2062  {
2063  /*
2064  * Resolve via the drop
2065  */
2066  dpo_copy(&path->fp_dpo, drop_dpo_get(path->fp_nh_proto));
2067  }
2068  break;
2069  case FIB_PATH_TYPE_DEAG:
2070  {
2071  if (DPO_PROTO_BIER == path->fp_nh_proto)
2072  {
2074  &path->fp_dpo);
2075  }
2076  else
2077  {
2078  /*
2079  * Resolve via a lookup DPO.
2080  * FIXME. control plane should add routes with a table ID
2081  */
2082  lookup_input_t input;
2083  lookup_cast_t cast;
2084 
2085  cast = (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_RPF_ID ?
2087  LOOKUP_UNICAST);
2088  input = (path->fp_cfg_flags & FIB_PATH_CFG_FLAG_DEAG_SRC ?
2091 
2092  lookup_dpo_add_or_lock_w_fib_index(path->deag.fp_tbl_id,
2093  path->fp_nh_proto,
2094  cast,
2095  input,
2097  &path->fp_dpo);
2098  }
2099  break;
2100  }
2101  case FIB_PATH_TYPE_DVR:
2102  dvr_dpo_add_or_lock(path->attached.fp_interface,
2103  path->fp_nh_proto,
2104  &path->fp_dpo);
2105  break;
2106  case FIB_PATH_TYPE_RECEIVE:
2107  /*
2108  * Resolve via a receive DPO.
2109  */
2111  path->receive.fp_interface,
2112  &path->receive.fp_addr,
2113  &path->fp_dpo);
2114  break;
2116  udp_encap_lock(path->udp_encap.fp_udp_encap_id);
2117  udp_encap_contribute_forwarding(path->udp_encap.fp_udp_encap_id,
2118  path->fp_nh_proto,
2119  &path->fp_dpo);
2120  break;
2121  case FIB_PATH_TYPE_INTF_RX: {
2122  /*
2123  * Resolve via a receive DPO.
2124  */
2126  path->intf_rx.fp_interface,
2127  &path->fp_dpo);
2128  break;
2129  }
2131  /*
2132  * Resolve via the user provided DPO
2133  */
2134  dpo_copy(&path->fp_dpo, &path->exclusive.fp_ex_dpo);
2135  break;
2136  }
2137 
2138  return (fib_path_is_resolved(path_index));
2139 }
2140 
2141 u32
2143 {
2144  fib_path_t *path;
2145 
2146  path = fib_path_get(path_index);
2147 
2148  switch (path->fp_type)
2149  {
2151  return (path->attached_next_hop.fp_interface);
2153  return (path->attached.fp_interface);
2154  case FIB_PATH_TYPE_RECEIVE:
2155  return (path->receive.fp_interface);
2157  if (fib_path_is_resolved(path_index))
2158  {
2160  }
2161  break;
2162  case FIB_PATH_TYPE_DVR:
2163  return (path->dvr.fp_interface);
2164  case FIB_PATH_TYPE_INTF_RX:
2166  case FIB_PATH_TYPE_SPECIAL:
2167  case FIB_PATH_TYPE_DEAG:
2172  break;
2173  }
2174  return (dpo_get_urpf(&path->fp_dpo));
2175 }
2176 
2177 index_t
2179 {
2180  fib_path_t *path;
2181 
2182  path = fib_path_get(path_index);
2183 
2184  switch (path->fp_type)
2185  {
2188  case FIB_PATH_TYPE_RECEIVE:
2189  case FIB_PATH_TYPE_INTF_RX:
2190  case FIB_PATH_TYPE_SPECIAL:
2191  case FIB_PATH_TYPE_DEAG:
2192  case FIB_PATH_TYPE_DVR:
2194  break;
2196  return (path->udp_encap.fp_udp_encap_id);
2198  return (path->fp_via_fib);
2200  return (path->bier_fmask.fp_bier_fmask);
2202  return (path->fp_via_bier_tbl);
2204  return (path->bier_imp.fp_bier_imp);
2205  }
2206  return (~0);
2207 }
2208 
2211 {
2212  fib_path_t *path;
2213 
2214  path = fib_path_get(path_index);
2215 
2216  ASSERT(dpo_is_adj(&path->fp_dpo));
2217  if (dpo_is_adj(&path->fp_dpo))
2218  {
2219  return (path->fp_dpo.dpoi_index);
2220  }
2221  return (ADJ_INDEX_INVALID);
2222 }
2223 
2224 u16
2226 {
2227  fib_path_t *path;
2228 
2229  path = fib_path_get(path_index);
2230 
2231  ASSERT(path);
2232 
2233  return (path->fp_weight);
2234 }
2235 
2236 u16
2238 {
2239  fib_path_t *path;
2240 
2241  path = fib_path_get(path_index);
2242 
2243  ASSERT(path);
2244 
2245  return (path->fp_preference);
2246 }
2247 
2248 u32
2250 {
2251  fib_path_t *path;
2252 
2253  path = fib_path_get(path_index);
2254 
2255  ASSERT(path);
2256 
2258  {
2259  return (path->deag.fp_rpf_id);
2260  }
2261 
2262  return (~0);
2263 }
2264 
2265 /**
2266  * @brief Contribute the path's adjacency to the list passed.
2267  * By calling this function over all paths, recursively, a child
2268  * can construct its full set of forwarding adjacencies, and hence its
2269  * uRPF list.
2270  */
2271 void
2273  index_t urpf)
2274 {
2275  fib_path_t *path;
2276 
2277  path = fib_path_get(path_index);
2278 
2279  /*
2280  * resolved and unresolved paths contribute to the RPF list.
2281  */
2282  switch (path->fp_type)
2283  {
2285  fib_urpf_list_append(urpf, path->attached_next_hop.fp_interface);
2286  break;
2287 
2289  fib_urpf_list_append(urpf, path->attached.fp_interface);
2290  break;
2291 
2293  if (FIB_NODE_INDEX_INVALID != path->fp_via_fib &&
2294  !fib_path_is_looped(path_index))
2295  {
2296  /*
2297  * there's unresolved due to constraints, and there's unresolved
2298  * due to ain't got no via. can't do nowt w'out via.
2299  */
2301  }
2302  break;
2303 
2305  case FIB_PATH_TYPE_SPECIAL:
2306  {
2307  /*
2308  * these path types may link to an adj, if that's what
2309  * the clinet gave
2310  */
2311  u32 rpf_sw_if_index;
2312 
2313  rpf_sw_if_index = dpo_get_urpf(&path->fp_dpo);
2314 
2315  if (~0 != rpf_sw_if_index)
2316  {
2317  fib_urpf_list_append(urpf, rpf_sw_if_index);
2318  }
2319  break;
2320  }
2321  case FIB_PATH_TYPE_DVR:
2322  fib_urpf_list_append(urpf, path->dvr.fp_interface);
2323  break;
2324  case FIB_PATH_TYPE_DEAG:
2325  case FIB_PATH_TYPE_RECEIVE:
2326  case FIB_PATH_TYPE_INTF_RX:
2331  /*
2332  * these path types don't link to an adj
2333  */
2334  break;
2335  }
2336 }
2337 
2338 void
2340  dpo_proto_t payload_proto,
2342  dpo_id_t *dpo)
2343 {
2344  fib_path_t *path;
2345 
2346  path = fib_path_get(path_index);
2347 
2348  ASSERT(path);
2349 
2350  switch (path->fp_type)
2351  {
2353  {
2354  dpo_id_t tmp = DPO_INVALID;
2355 
2356  dpo_copy(&tmp, dpo);
2357 
2358  mpls_disp_dpo_create(payload_proto, ~0, mode, &tmp, dpo);
2359  dpo_reset(&tmp);
2360  break;
2361  }
2362  case FIB_PATH_TYPE_DEAG:
2363  {
2364  dpo_id_t tmp = DPO_INVALID;
2365 
2366  dpo_copy(&tmp, dpo);
2367 
2368  mpls_disp_dpo_create(payload_proto,
2369  path->deag.fp_rpf_id,
2370  mode, &tmp, dpo);
2371  dpo_reset(&tmp);
2372  break;
2373  }
2374  case FIB_PATH_TYPE_RECEIVE:
2377  case FIB_PATH_TYPE_INTF_RX:
2380  case FIB_PATH_TYPE_SPECIAL:
2384  case FIB_PATH_TYPE_DVR:
2385  break;
2386  }
2387 
2389  {
2390  dpo_id_t tmp = DPO_INVALID;
2391 
2392  dpo_copy(&tmp, dpo);
2393 
2394  pw_cw_dpo_create(&tmp, dpo);
2395  dpo_reset(&tmp);
2396  }
2397 }
2398 
2399 void
2402  dpo_id_t *dpo)
2403 {
2404  fib_path_t *path;
2405 
2406  path = fib_path_get(path_index);
2407 
2408  ASSERT(path);
2410 
2411  /*
2412  * The DPO stored in the path was created when the path was resolved.
2413  * This then represents the path's 'native' protocol; IP.
2414  * For all others will need to go find something else.
2415  */
2416  if (fib_path_to_chain_type(path) == fct)
2417  {
2418  dpo_copy(dpo, &path->fp_dpo);
2419  }
2420  else
2421  {
2422  switch (path->fp_type)
2423  {
2425  switch (fct)
2426  {
2435  {
2436  adj_index_t ai;
2437 
2438  /*
2439  * get a appropriate link type adj.
2440  */
2442  path,
2444  dpo_set(dpo, DPO_ADJACENCY,
2446  adj_unlock(ai);
2447 
2448  break;
2449  }
2451  break;
2452  }
2453  break;
2455  switch (fct)
2456  {
2464  fib_path_recursive_adj_update(path, fct, dpo);
2465  break;
2468  ASSERT(0);
2469  break;
2470  }
2471  break;
2473  switch (fct)
2474  {
2477  break;
2486  ASSERT(0);
2487  break;
2488  }
2489  break;
2491  switch (fct)
2492  {
2494  fib_path_bier_fmask_update(path, dpo);
2495  break;
2504  ASSERT(0);
2505  break;
2506  }
2507  break;
2509  bier_imp_contribute_forwarding(path->bier_imp.fp_bier_imp,
2511  dpo);
2512  break;
2513  case FIB_PATH_TYPE_DEAG:
2514  switch (fct)
2515  {
2522  dpo);
2523  break;
2529  dpo_copy(dpo, &path->fp_dpo);
2530  break;
2532  break;
2535  ASSERT(0);
2536  break;
2537  }
2538  break;
2540  dpo_copy(dpo, &path->exclusive.fp_ex_dpo);
2541  break;
2543  switch (fct)
2544  {
2552  {
2553  adj_index_t ai;
2554 
2555  /*
2556  * get a appropriate link type adj.
2557  */
2559  path,
2561  dpo_set(dpo, DPO_ADJACENCY,
2563  adj_unlock(ai);
2564  break;
2565  }
2568  {
2569  adj_index_t ai;
2570 
2571  /*
2572  * Create the adj needed for sending IP multicast traffic
2573  */
2576  path->attached.fp_interface);
2577  dpo_set(dpo, DPO_ADJACENCY,
2579  ai);
2580  adj_unlock(ai);
2581  }
2582  break;
2583  }
2584  break;
2585  case FIB_PATH_TYPE_INTF_RX:
2586  /*
2587  * Create the adj needed for sending IP multicast traffic
2588  */
2590  path->attached.fp_interface,
2591  dpo);
2592  break;
2594  udp_encap_contribute_forwarding(path->udp_encap.fp_udp_encap_id,
2595  path->fp_nh_proto,
2596  dpo);
2597  break;
2598  case FIB_PATH_TYPE_RECEIVE:
2599  case FIB_PATH_TYPE_SPECIAL:
2600  case FIB_PATH_TYPE_DVR:
2601  dpo_copy(dpo, &path->fp_dpo);
2602  break;
2603  }
2604  }
2605 }
2606 
2610  load_balance_path_t *hash_key)
2611 {
2612  load_balance_path_t *mnh;
2613  fib_path_t *path;
2614 
2615  path = fib_path_get(path_index);
2616 
2617  ASSERT(path);
2618 
2619  vec_add2(hash_key, mnh, 1);
2620 
2621  mnh->path_weight = path->fp_weight;
2622  mnh->path_index = path_index;
2623 
2624  if (fib_path_is_resolved(path_index))
2625  {
2626  fib_path_contribute_forwarding(path_index, fct, &mnh->path_dpo);
2627  }
2628  else
2629  {
2630  dpo_copy(&mnh->path_dpo,
2632  }
2633  return (hash_key);
2634 }
2635 
2636 int
2638 {
2639  fib_path_t *path;
2640 
2641  path = fib_path_get(path_index);
2642 
2643  return ((FIB_PATH_TYPE_RECURSIVE == path->fp_type) &&
2646 }
2647 
2648 int
2650 {
2651  fib_path_t *path;
2652 
2653  path = fib_path_get(path_index);
2654 
2655  return (FIB_PATH_TYPE_EXCLUSIVE == path->fp_type);
2656 }
2657 
2658 int
2660 {
2661  fib_path_t *path;
2662 
2663  path = fib_path_get(path_index);
2664 
2665  return (FIB_PATH_TYPE_DEAG == path->fp_type);
2666 }
2667 
2668 int
2670 {
2671  fib_path_t *path;
2672 
2673  path = fib_path_get(path_index);
2674 
2675  return (dpo_id_is_valid(&path->fp_dpo) &&
2677  !fib_path_is_looped(path_index) &&
2679 }
2680 
2681 int
2683 {
2684  fib_path_t *path;
2685 
2686  path = fib_path_get(path_index);
2687 
2689 }
2690 
2693  fib_node_index_t path_index,
2694  const fib_path_ext_t *path_ext,
2695  void *args)
2696 {
2697  fib_path_encode_ctx_t *ctx = args;
2698  fib_route_path_t *rpath;
2699  fib_path_t *path;
2700 
2701  path = fib_path_get(path_index);
2702  if (!path)
2703  return (FIB_PATH_LIST_WALK_CONTINUE);
2704 
2705  vec_add2(ctx->rpaths, rpath, 1);
2706  rpath->frp_weight = path->fp_weight;
2707  rpath->frp_preference = path->fp_preference;
2708  rpath->frp_proto = path->fp_nh_proto;
2709  rpath->frp_sw_if_index = ~0;
2710  rpath->frp_fib_index = 0;
2711 
2712  switch (path->fp_type)
2713  {
2714  case FIB_PATH_TYPE_RECEIVE:
2715  rpath->frp_addr = path->receive.fp_addr;
2716  rpath->frp_sw_if_index = path->receive.fp_interface;
2717  rpath->frp_flags |= FIB_ROUTE_PATH_LOCAL;
2718  break;
2720  rpath->frp_sw_if_index = path->attached.fp_interface;
2721  break;
2723  rpath->frp_sw_if_index = path->attached_next_hop.fp_interface;
2724  rpath->frp_addr = path->attached_next_hop.fp_nh;
2725  break;
2727  rpath->frp_bier_fmask = path->bier_fmask.fp_bier_fmask;
2728  break;
2729  case FIB_PATH_TYPE_SPECIAL:
2730  break;
2731  case FIB_PATH_TYPE_DEAG:
2732  rpath->frp_fib_index = path->deag.fp_tbl_id;
2734  {
2735  rpath->frp_flags |= FIB_ROUTE_PATH_RPF_ID;
2736  }
2737  break;
2739  rpath->frp_addr = path->recursive.fp_nh.fp_ip;
2740  rpath->frp_fib_index = path->recursive.fp_tbl_id;
2741  break;
2742  case FIB_PATH_TYPE_DVR:
2743  rpath->frp_sw_if_index = path->dvr.fp_interface;
2744  rpath->frp_flags |= FIB_ROUTE_PATH_DVR;
2745  break;
2747  rpath->frp_udp_encap_id = path->udp_encap.fp_udp_encap_id;
2749  break;
2750  case FIB_PATH_TYPE_INTF_RX:
2751  rpath->frp_sw_if_index = path->receive.fp_interface;
2753  break;
2756  default:
2757  break;
2758  }
2759 
2760  if (path_ext && path_ext->fpe_type == FIB_PATH_EXT_MPLS)
2761  {
2762  rpath->frp_label_stack = path_ext->fpe_path.frp_label_stack;
2763  }
2764 
2766  rpath->frp_flags |= FIB_ROUTE_PATH_DROP;
2771 
2772  return (FIB_PATH_LIST_WALK_CONTINUE);
2773 }
2774 
2777 {
2778  fib_path_t *path;
2779 
2780  path = fib_path_get(path_index);
2781 
2782  return (path->fp_nh_proto);
2783 }
2784 
2785 void
2787 {
2788  fib_node_register_type (FIB_NODE_TYPE_PATH, &fib_path_vft);
2789  fib_path_logger = vlib_log_register_class ("fib", "path");
2790 }
2791 
2792 static clib_error_t *
2794  unformat_input_t * input,
2795  vlib_cli_command_t * cmd)
2796 {
2797  fib_node_index_t pi;
2798  fib_path_t *path;
2799 
2800  if (unformat (input, "%d", &pi))
2801  {
2802  /*
2803  * show one in detail
2804  */
2805  if (!pool_is_free_index(fib_path_pool, pi))
2806  {
2807  path = fib_path_get(pi);
2808  u8 *s = format(NULL, "%U", format_fib_path, pi, 1,
2810  s = format(s, "\n children:");
2812  vlib_cli_output (vm, "%s", s);
2813  vec_free(s);
2814  }
2815  else
2816  {
2817  vlib_cli_output (vm, "path %d invalid", pi);
2818  }
2819  }
2820  else
2821  {
2822  vlib_cli_output (vm, "FIB Paths");
2823  pool_foreach_index (pi, fib_path_pool,
2824  ({
2825  vlib_cli_output (vm, "%U", format_fib_path, pi, 0,
2827  }));
2828  }
2829 
2830  return (NULL);
2831 }
2832 
2833 VLIB_CLI_COMMAND (show_fib_path, static) = {
2834  .path = "show fib paths",
2835  .function = show_fib_path_command,
2836  .short_help = "show fib paths",
2837 };
vlib_log_class_t vlib_log_register_class(char *class, char *subclass)
Definition: log.c:176
int fib_path_is_resolved(fib_node_index_t path_index)
Definition: fib_path.c:2669
static uword vnet_sw_interface_is_up(vnet_main_t *vnm, u32 sw_if_index)
Contribute an object that is to be used to forward BIER packets.
Definition: fib_types.h:122
int fib_path_resolve(fib_node_index_t path_index)
Definition: fib_path.c:1892
void ip_null_dpo_add_and_lock(dpo_proto_t proto, ip_null_dpo_action_t action, dpo_id_t *dpo)
Definition: ip_null_dpo.c:78
Contribute an object that is to be used to forward IP6 packets.
Definition: fib_types.h:137
ip46_address_t frp_addr
The next-hop address.
Definition: fib_types.h:495
struct fib_path_t_::@146::@152 recursive
fib_path_ext_type_t fpe_type
The type of path extension.
Definition: fib_path_ext.h:126
Recursive resolution source.
Definition: fib_entry.h:130
A path that resolves via a DVR DPO.
Definition: fib_types.h:381
void mpls_disp_dpo_create(dpo_proto_t payload_proto, fib_rpf_id_t rpf_id, fib_mpls_lsp_mode_t mode, const dpo_id_t *parent, dpo_id_t *dpo)
Create an MPLS label object.
Contribute an object that is to be used to forward IP6 packets.
Definition: fib_types.h:113
u32 flags
Definition: vhost_user.h:141
void receive_dpo_add_or_lock(dpo_proto_t proto, u32 sw_if_index, const ip46_address_t *nh_addr, dpo_id_t *dpo)
Definition: receive_dpo.c:62
void pw_cw_dpo_create(const dpo_id_t *parent, dpo_id_t *dpo)
Create an PW CW pop.
Definition: pw_cw.c:43
static fib_path_t * fib_path_from_fib_node(fib_node_t *node)
Definition: fib_path.c:457
void bier_imp_contribute_forwarding(index_t bii, dpo_proto_t proto, dpo_id_t *dpo)
Definition: bier_imp.c:174
uword fib_path_hash(fib_node_index_t path_index)
Definition: fib_path.c:1521
fib_node_index_t path_index
The index of the FIB path.
Definition: load_balance.h:71
void fib_path_contribute_forwarding(fib_node_index_t path_index, fib_forward_chain_type_t fct, dpo_id_t *dpo)
Definition: fib_path.c:2400
enum fib_path_format_flags_t_ fib_format_path_flags_t
index_t fp_bier_fmask
BIER FMask ID.
Definition: fib_path.c:300
void lookup_dpo_add_or_lock_w_table_id(u32 table_id, dpo_proto_t proto, lookup_cast_t cast, lookup_input_t input, lookup_table_t table_config, dpo_id_t *dpo)
Definition: lookup_dpo.c:159
mpls_eos_bit_t frp_eos
EOS bit for the resolving label.
Definition: fib_types.h:506
fib_path_oper_attribute_t_
Enurmeration of path operational (i.e.
Definition: fib_path.c:144
u32 fp_classify_table_id
The UDP Encap object this path resolves through.
Definition: fib_path.c:360
int fib_entry_is_resolved(fib_node_index_t fib_entry_index)
Return !0 is the entry is resolved, i.e.
Definition: fib_entry.c:1483
index_t fib_path_get_resolving_index(fib_node_index_t path_index)
Definition: fib_path.c:2178
void fib_path_contribute_urpf(fib_node_index_t path_index, index_t urpf)
Contribute the path&#39;s adjacency to the list passed.
Definition: fib_path.c:2272
A representation of a path as described by a route producer.
Definition: fib_types.h:479
u8 * format_dpo_type(u8 *s, va_list *args)
format a DPO type
Definition: dpo.c:138
dpo_id_t path_dpo
ID of the Data-path object.
Definition: load_balance.h:66
int dpo_is_adj(const dpo_id_t *dpo)
Return TRUE is the DPO is any type of adjacency.
Definition: dpo.c:278
vnet_main_t * vnet_get_main(void)
Definition: misc.c:46
u8 * format_bier_table_id(u8 *s, va_list *ap)
Format a BIER table ID.
Definition: bier_types.c:193
#define FIB_PATH_OPER_ATTRIBUTES
Definition: fib_path.c:176
#define STRUCT_MARK_PTR(v, f)
Definition: clib.h:71
int fib_path_cmp(fib_node_index_t pi1, fib_node_index_t pi2)
Definition: fib_path.c:1661
A Drop path - resolve the path on the drop DPO.
Definition: fib_types.h:340
void bier_fmask_contribute_forwarding(index_t bfmi, dpo_id_t *dpo)
Definition: bier_fmask.c:120
void fib_node_init(fib_node_t *node, fib_node_type_t type)
Definition: fib_node.c:185
index_t fp_bier_imp
The BIER imposition object this is part of the path&#39;s key, since the index_t of an imposition object ...
Definition: fib_path.c:314
u32 fib_entry_child_add(fib_node_index_t fib_entry_index, fib_node_type_t child_type, fib_node_index_t child_index)
Definition: fib_entry.c:556
struct fib_path_t_::@146::@160 intf_rx
static int dpo_id_is_valid(const dpo_id_t *dpoi)
Return true if the DPO object is valid, i.e.
Definition: dpo.h:209
#define NULL
Definition: clib.h:58
A path that resolves via a BIER impostion object.
Definition: fib_types.h:373
An MPLS extension that maintains the path&#39;s outgoing labels,.
Definition: fib_path_ext.h:31
void fib_path_module_init(void)
Definition: fib_path.c:2786
int fib_path_is_exclusive(fib_node_index_t path_index)
Definition: fib_path.c:2649
void bier_imp_lock(index_t bii)
Definition: bier_imp.c:48
enum fib_node_back_walk_rc_t_ fib_node_back_walk_rc_t
Return code from a back walk function.
void fib_entry_contribute_forwarding(fib_node_index_t fib_entry_index, fib_forward_chain_type_t fct, dpo_id_t *dpo)
Definition: fib_entry.c:448
static void fib_path_bier_fmask_update(fib_path_t *path, dpo_id_t *dpo)
Definition: fib_path.c:839
index_t frp_bier_imp
A path via a BIER imposition object.
Definition: fib_types.h:512
void bier_table_ecmp_unlock(index_t bti)
Definition: bier_table.c:462
u32 mpls_label_t
A label value only, i.e.
Definition: packet.h:26
dpo_proto_t fib_forw_chain_type_to_dpo_proto(fib_forward_chain_type_t fct)
Convert from a chain type to the DPO proto it will install.
Definition: fib_types.c:410
void load_balance_map_path_state_change(fib_node_index_t path_index)
the state of a path has changed (it has no doubt gone down).
void fib_entry_child_remove(fib_node_index_t fib_entry_index, u32 sibling_index)
Definition: fib_entry.c:567
fib_node_index_t fp_tbl_id
The FIB table index in which to find the next-hop.
Definition: fib_path.c:289
void dpo_copy(dpo_id_t *dst, const dpo_id_t *src)
atomic copy a data-plane object.
Definition: dpo.c:262
u32 index_t
A Data-Path Object is an object that represents actions that are applied to packets are they are swit...
Definition: dpo.h:41
u32 dpo_get_urpf(const dpo_id_t *dpo)
Get a uRPF interface for the DPO.
Definition: dpo.c:382
#define STRUCT_MARK(mark)
Definition: clib.h:70
#define vec_add2(V, P, N)
Add N elements to end of vector V, return pointer to new elements in P.
Definition: vec.h:560
A path that resolves via a BIER [ECMP] Table.
Definition: fib_types.h:369
The path is resolved.
Definition: fib_path.c:156
format_function_t format_ip46_address
Definition: format.h:61
Contribute an object that is to be used to forward IP4 packets.
Definition: fib_types.h:109
clib_memset(h->entries, 0, sizeof(h->entries[0])*entries)
#define STRUCT_OFFSET_OF(t, f)
Definition: clib.h:65
void fib_node_deinit(fib_node_t *node)
Definition: fib_node.c:197
static vnet_sw_interface_t * vnet_get_sw_interface(vnet_main_t *vnm, u32 sw_if_index)
const fib_prefix_t * fib_entry_get_prefix(fib_node_index_t fib_entry_index)
Definition: fib_entry.c:1681
u8 * format(u8 *s, const char *fmt,...)
Definition: format.c:424
dpo_proto_t frp_proto
The protocol of the address below.
Definition: fib_types.h:484
bier_table_id_t frp_bier_tbl
A path that resolves via a BIER Table.
Definition: fib_types.h:554
A path that result in received traffic being recieved/recirculated so that it appears to have arrived...
Definition: fib_types.h:349
dpo_id_t fp_ex_dpo
The user provided &#39;exclusive&#39; DPO.
Definition: fib_path.c:332
int fib_path_is_looped(fib_node_index_t path_index)
Definition: fib_path.c:2682
Definition: fib_entry.h:283
The ID of a table.
Definition: bier_types.h:394
void adj_child_remove(adj_index_t adj_index, u32 sibling_index)
Remove a child dependent.
Definition: adj.c:354
#define pool_get(P, E)
Allocate an object E from a pool P (unspecified alignment).
Definition: pool.h:236
The path has become a permanent drop.
Definition: fib_path.c:164
int fib_path_cmp_for_sort(void *v1, void *v2)
Definition: fib_path.c:1634
#define ip46_address_cmp(ip46_1, ip46_2)
Definition: ip6_packet.h:92
unsigned char u8
Definition: types.h:56
#define pool_len(p)
Number of elements in pool vector.
Definition: pool.h:140
ip46_address_t fp_ip
The next-hop.
Definition: fib_path.c:273
struct fib_path_t_::@146::@163 dvr
load_balance_path_t * fib_path_append_nh_for_multipath_hash(fib_node_index_t path_index, fib_forward_chain_type_t fct, load_balance_path_t *hash_key)
Definition: fib_path.c:2608
void fib_node_register_type(fib_node_type_t type, const fib_node_vft_t *vft)
fib_node_register_type
Definition: fib_node.c:60
const dpo_id_t * drop_dpo_get(dpo_proto_t proto)
Definition: drop_dpo.c:25
fib_rpf_id_t frp_rpf_id
The RPF-ID.
Definition: fib_types.h:524
A local path with a RPF-ID => multicast traffic.
Definition: fib_types.h:353
#define FIB_PATH_TYPES
Definition: fib_path.c:120
struct fib_path_t_::@146::@151 attached
u32 vlib_log_class_t
Definition: vlib.h:51
fib_path_type_t fp_type
The type of the path.
Definition: fib_path.c:226
struct fib_path_t_::@146::@158 exclusive
u32 frp_sw_if_index
The interface.
Definition: fib_types.h:519
mpls_eos_bit_t fp_eos
The EOS bit of the resolving label.
Definition: fib_path.c:282
void fib_table_entry_special_remove(u32 fib_index, const fib_prefix_t *prefix, fib_source_t source)
Remove a &#39;special&#39; entry from the FIB.
Definition: fib_table.c:407
static const adj_index_t fib_path_attached_next_hop_get_adj(fib_path_t *path, vnet_link_t link)
Definition: fib_path.c:649
void bier_table_contribute_forwarding(index_t bti, dpo_id_t *dpo)
Definition: bier_table.c:728
u8 * format_white_space(u8 *s, va_list *va)
Definition: std-formats.c:129
Recursion constraint of via a host prefix.
Definition: fib_types.h:324
struct fib_path_t_::@146::@156 deag
fib_node_index_t fib_path_copy(fib_node_index_t path_index, fib_node_index_t path_list_index)
Definition: fib_path.c:1467
u8 * format_bier_imp(u8 *s, va_list *args)
Definition: bier_imp.c:137
void bier_fmask_child_remove(fib_node_index_t bfmi, u32 sibling_index)
Definition: bier_fmask.c:152
Aggregrate type for a prefix.
Definition: fib_types.h:203
fib_path_cfg_flags_t fp_cfg_flags
Configuration Flags.
Definition: fib_path.c:221
void fib_entry_contribute_urpf(fib_node_index_t entry_index, index_t urpf)
Contribute the set of Adjacencies that this entry forwards with to build the uRPF list of its childre...
Definition: fib_entry.c:402
void fib_show_memory_usage(const char *name, u32 in_use_elts, u32 allocd_elts, size_t size_elt)
Show the memory usage for a type.
Definition: fib_node.c:220
fib_node_t fp_node
A path is a node in the FIB graph.
Definition: fib_path.c:205
interface receive.
Definition: fib_path.c:84
void adj_unlock(adj_index_t adj_index)
Release a reference counting lock on the adjacency.
Definition: adj.c:318
A path via a UDP encap object.
Definition: fib_types.h:361
dpo_id_t fp_dpo
The Data-path objects through which this path resolves for IP.
Definition: fib_path.c:401
unsigned int u32
Definition: types.h:88
#define FIB_PATH_CFG_ATTRIBUTES
Definition: fib_path.h:113
Contribute an object that is to be used to forward Ethernet packets.
Definition: fib_types.h:141
enum dpo_proto_t_ dpo_proto_t
Data path protocol.
fib_protocol_t dpo_proto_to_fib(dpo_proto_t dpo_proto)
Definition: fib_types.c:253
int load_balance_is_drop(const dpo_id_t *dpo)
Definition: load_balance.c:272
u16 fib_path_get_weight(fib_node_index_t path_index)
Definition: fib_path.c:2225
enum lookup_cast_t_ lookup_cast_t
Switch to use the packet&#39;s source or destination address for lookup.
void fib_urpf_list_append(index_t ui, u32 sw_if_index)
Append another interface to the list.
static void fib_path_attached_next_hop_set(fib_path_t *path)
Definition: fib_path.c:676
fib_node_index_t fib_path_create_special(fib_node_index_t pl_index, dpo_proto_t nh_proto, fib_path_cfg_flags_t flags, const dpo_id_t *dpo)
Definition: fib_path.c:1421
Definition: fib_entry.h:281
fib_rpf_id_t fp_rpf_id
The RPF-ID to tag the packets with.
Definition: fib_path.c:324
void bier_disp_table_contribute_forwarding(index_t bdti, dpo_id_t *dpo)
index_t frp_bier_fmask
Resolving via a BIER Fmask.
Definition: fib_types.h:569
u8 * format_fib_path(u8 *s, va_list *args)
Definition: fib_path.c:464
The identity of a DPO is a combination of its type and its instance number/index of objects of that t...
Definition: dpo.h:170
u32 fp_sibling
the index of this path in the parent&#39;s child list.
Definition: fib_path.c:406
Contribute an object that is to be used to forward end-of-stack MPLS packets.
Definition: fib_types.h:129
fib_node_bw_reason_flag_t fnbw_reason
The reason/trigger for the backwalk.
Definition: fib_node.h:212
format_function_t format_mpls_eos_bit
Definition: mpls.h:69
format_function_t format_vnet_sw_interface_name
#define ADJ_INDEX_INVALID
Invalid ADJ index - used when no adj is known likewise blazoned capitals INVALID speak volumes where ...
Definition: adj_types.h:36
#define pool_elt_at_index(p, i)
Returns pointer to element at given index.
Definition: pool.h:514
int adj_is_up(adj_index_t ai)
Return true if the adjacency is &#39;UP&#39;, i.e.
Definition: adj.c:495
u8 * format_fib_node_bw_reason(u8 *s, va_list *args)
Definition: fib_walk.c:973
dpo_proto_t fp_nh_proto
The protocol of the next-hop, i.e.
Definition: fib_path.c:233
struct fib_path_t_::@146::@154 bier_table
struct fib_path_t_ fib_path_t
A FIB path.
index_t classify_dpo_create(dpo_proto_t proto, u32 classify_table_index)
Definition: classify_dpo.c:43
dpo_type_t dpoi_type
the type
Definition: dpo.h:174
int vnet_sw_interface_is_p2p(vnet_main_t *vnm, u32 sw_if_index)
Definition: interface.c:1232
long ctx[MAX_CONNS]
Definition: main.c:144
struct _unformat_input_t unformat_input_t
unsigned short u16
Definition: types.h:57
adj_index_t fib_path_get_adj(fib_node_index_t path_index)
Definition: fib_path.c:2210
enum fib_mpls_lsp_mode_t_ fib_mpls_lsp_mode_t
MPLS LSP mode - only valid at the head and tail.
#define pool_put(P, E)
Free an object E in pool P.
Definition: pool.h:286
index_t fp_via_bier_tbl
the resolving bier-table
Definition: fib_path.c:391
fib_mpls_label_t * frp_label_stack
The outgoing MPLS label Stack.
Definition: fib_types.h:540
Recursion constraint of via an attahced prefix.
Definition: fib_types.h:328
void lookup_dpo_add_or_lock_w_fib_index(fib_node_index_t fib_index, dpo_proto_t proto, lookup_cast_t cast, lookup_input_t input, lookup_table_t table_config, dpo_id_t *dpo)
Definition: lookup_dpo.c:133
void fib_path_stack_mpls_disp(fib_node_index_t path_index, dpo_proto_t payload_proto, fib_mpls_lsp_mode_t mode, dpo_id_t *dpo)
Definition: fib_path.c:2339
fib_node_type_t fn_type
The node&#39;s type.
Definition: fib_node.h:299
enum fib_path_cfg_attribute_t_ fib_path_cfg_attribute_t
Given a route of the form; q.r.s.t/Y via <interface> <next-hop>
An node in the FIB graph.
Definition: fib_node.h:295
dpo_id_t dpo
Exclusive DPO.
Definition: fib_types.h:544
void fib_table_unlock(u32 fib_index, fib_protocol_t proto, fib_source_t source)
Take a reference counting lock on the table.
Definition: fib_table.c:1248
static fib_path_t * fib_path_pool
Definition: fib_path.c:419
Pop a Psuedo Wire Control Word.
Definition: fib_types.h:390
static fib_path_t * fib_path_get(fib_node_index_t index)
Definition: fib_path.c:439
ip46_address_t fp_nh
The next-hop.
Definition: fib_path.c:255
void dvr_dpo_add_or_lock(u32 sw_if_index, dpo_proto_t dproto, dpo_id_t *dpo)
Definition: dvr_dpo.c:91
u32 fib_entry_get_resolving_interface(fib_node_index_t entry_index)
Definition: fib_entry.c:1448
fib_path_oper_flags_t_
Path flags from the attributes.
Definition: fib_path.c:190
fib_node_index_t fib_table_entry_special_add(u32 fib_index, const fib_prefix_t *prefix, fib_source_t source, fib_entry_flag_t flags)
Add a &#39;special&#39; entry to the FIB.
Definition: fib_table.c:388
#define FOR_EACH_FIB_PATH_OPER_ATTRIBUTE(_item)
Definition: fib_path.c:182
#define MPLS_FIB_DEFAULT_TABLE_ID
Definition: mpls_fib.h:28
The path forms part of a recursive loop.
Definition: fib_path.c:152
vnet_link_t fib_forw_chain_type_to_link_type(fib_forward_chain_type_t fct)
Convert from a chain type to the adjacency&#39;s link type.
Definition: fib_types.c:359
fib_node_list_t fn_children
Vector of nodes that depend upon/use/share this node.
Definition: fib_node.h:309
u32 frp_classify_table_id
Classify table ID.
Definition: fib_types.h:564
int adj_recursive_loop_detect(adj_index_t ai, fib_node_index_t **entry_indicies)
descend the FIB graph looking for loops
Definition: adj.c:196
vlib_main_t * vm
Definition: buffer.c:312
int bier_table_id_cmp(const bier_table_id_t *btid1, const bier_table_id_t *btid2)
Compare to BIER table IDs for equality.
Definition: bier_types.c:112
via a DVR.
Definition: fib_path.c:108
void udp_encap_lock(index_t uei)
Definition: udp_encap.c:149
Contribute an object that is to be used to forward NSH packets.
Definition: fib_types.h:147
#define vec_free(V)
Free vector&#39;s memory (no header).
Definition: vec.h:341
u32 fp_udp_encap_id
The UDP Encap object this path resolves through.
Definition: fib_path.c:354
static void fib_path_last_lock_gone(fib_node_t *node)
Definition: fib_path.c:643
static fib_node_index_t fib_path_get_index(fib_path_t *path)
Definition: fib_path.c:445
A FIB path.
Definition: fib_path.c:201
int fib_entry_recursive_loop_detect(fib_node_index_t entry_index, fib_node_index_t **entry_indicies)
Definition: fib_entry.c:1397
fib_node_get_t fnv_get
Definition: fib_node.h:283
enum fib_path_oper_flags_t_ fib_path_oper_flags_t
Path flags from the attributes.
index_t fp_via_bier_fmask
the resolving bier-fmask
Definition: fib_path.c:395
u32 fib_path_get_rpf_id(fib_node_index_t path_index)
Definition: fib_path.c:2249
u32 fib_node_index_t
A typedef of a node index.
Definition: fib_types.h:30
void interface_rx_dpo_add_or_lock(dpo_proto_t proto, u32 sw_if_index, dpo_id_t *dpo)
#define pool_is_free_index(P, I)
Use free bitmap to query whether given index is free.
Definition: pool.h:283
Don&#39;t resolve the path, use the DPO the client provides.
Definition: fib_types.h:344
u32 adj_index_t
An index for adjacencies.
Definition: adj_types.h:30
void fib_prefix_from_ip46_addr(const ip46_address_t *addr, fib_prefix_t *pfx)
Host prefix from ip.
Definition: fib_types.c:80
static void fib_path_memory_show(void)
Definition: fib_path.c:1214
The path is attached, despite what the next-hop may say.
Definition: fib_path.c:160
void dpo_set(dpo_id_t *dpo, dpo_type_t type, dpo_proto_t proto, index_t index)
Set/create a DPO ID The DPO will be locked.
Definition: dpo.c:186
void fib_prefix_from_mpls_label(mpls_label_t label, mpls_eos_bit_t eos, fib_prefix_t *prf)
Definition: fib_types.c:94
vl_api_vxlan_gbp_api_tunnel_mode_t mode
Definition: vxlan_gbp.api:44
static fib_node_back_walk_rc_t fib_path_back_walk_notify(fib_node_t *node, fib_node_back_walk_ctx_t *ctx)
Definition: fib_path.c:976
Path resolves via a UDP encap object.
Definition: fib_path.c:88
enum lookup_input_t_ lookup_input_t
Switch to use the packet&#39;s source or destination address for lookup.
void fib_table_lock(u32 fib_index, fib_protocol_t proto, fib_source_t source)
Release a reference counting lock on the table.
Definition: fib_table.c:1268
Context passed between object during a back walk.
Definition: fib_node.h:208
u32 fib_rpf_id_t
An RPF-ID is numerical value that is used RPF validate.
Definition: fib_types.h:400
#define VLIB_CLI_COMMAND(x,...)
Definition: cli.h:155
u32 fp_pl_index
The index of the path-list to which this path belongs.
Definition: fib_path.c:210
static void fib_path_recursive_adj_update(fib_path_t *path, fib_forward_chain_type_t fct, dpo_id_t *dpo)
Definition: fib_path.c:734
static const adj_index_t fib_path_attached_get_adj(fib_path_t *path, vnet_link_t link)
Definition: fib_path.c:706
#define ASSERT(truth)
int fib_path_is_deag(fib_node_index_t path_index)
Definition: fib_path.c:2659
vnet_link_t dpo_proto_to_link(dpo_proto_t dp)
format a DPO protocol
Definition: dpo.c:118
fib_node_index_t fp_via_fib
the resolving via fib.
Definition: fib_path.c:387
static int fib_path_is_permanent_drop(fib_path_t *path)
Definition: fib_path.c:864
enum vnet_link_t_ vnet_link_t
Link Type: A description of the protocol of packets on the link.
index_t bier_table_ecmp_create_and_lock(const bier_table_id_t *btid)
Definition: bier_table.c:456
ip46_address_t fp_addr
The next-hop.
Definition: fib_path.c:342
static fib_forward_chain_type_t fib_path_to_chain_type(const fib_path_t *path)
Definition: fib_path.c:950
u8 frp_preference
A path preference.
Definition: fib_types.h:585
bier_table_id_t fp_bier_tbl
The BIER table&#39;s ID.
Definition: fib_path.c:306
uword hash_memory(void *p, word n_bytes, uword state)
Definition: hash.c:224
Path encode context to use when walking a path-list to encode paths.
Definition: fib_path.h:213
A deag path using the packet&#39;s source not destination address.
Definition: fib_types.h:357
enum fib_forward_chain_type_t_ fib_forward_chain_type_t
FIB output chain type.
fib_route_path_flags_t frp_flags
flags on the path
Definition: fib_types.h:589
u32 fp_interface
The interface.
Definition: fib_path.c:259
static clib_error_t * show_fib_path_command(vlib_main_t *vm, unformat_input_t *input, vlib_cli_command_t *cmd)
Definition: fib_path.c:2793
vlib_log_class_t fib_path_logger
the logger
Definition: fib_path.c:424
int dpo_cmp(const dpo_id_t *dpo1, const dpo_id_t *dpo2)
Compare two Data-path objects.
Definition: dpo.c:249
A path that resolves via a BIER F-Mask.
Definition: fib_types.h:365
u8 * format_dpo_id(u8 *s, va_list *args)
Format a DPO_id_t oject
Definition: dpo.c:148
A path that resolves via another table.
Definition: fib_types.h:377
u32 entries
format_function_t format_mpls_unicast_label
Definition: mpls.h:71
static void fib_path_unresolve(fib_path_t *path)
Definition: fib_path.c:876
fib_route_path_t * rpaths
Definition: fib_path.h:215
mpls_label_t frp_local_label
The MPLS local Label to reursively resolve through.
Definition: fib_types.h:502
dpo_proto_t fib_path_get_proto(fib_node_index_t path_index)
Definition: fib_path.c:2776
fib_path_oper_flags_t fp_oper_flags
Memebers in this last section represent information that is dervied during resolution.
Definition: fib_path.c:380
struct fib_path_t_::@146::@150 attached_next_hop
int fib_path_is_recursive_constrained(fib_node_index_t path_index)
Definition: fib_path.c:2637
void fib_path_list_back_walk(fib_node_index_t path_list_index, fib_node_back_walk_ctx_t *ctx)
Attached-nexthop.
Definition: fib_path.c:60
typedef udp_encap
UDP Encap object.
Definition: udp.api:39
enum fib_path_list_walk_rc_t_ fib_path_list_walk_rc_t
return code to control pat-hlist walk
u32 fib_path_get_resolving_interface(fib_node_index_t path_index)
Definition: fib_path.c:2142
index_t dpoi_index
the index of objects of that type
Definition: dpo.h:186
#define FIB_NODE_INDEX_INVALID
Definition: fib_types.h:31
struct fib_path_t_::@146::@155 bier_imp
A for-us/local path.
Definition: fib_types.h:332
u32 path_weight
weight for the path.
Definition: load_balance.h:76
u32 adj_child_add(adj_index_t adj_index, fib_node_type_t child_type, fib_node_index_t child_index)
Add a child dependent to an adjacency.
Definition: adj.c:337
u16 fib_path_get_preference(fib_node_index_t path_index)
Definition: fib_path.c:2237
u64 uword
Definition: types.h:112
struct fib_path_t_::@146::@159 receive
#define DPO_INVALID
An initialiser for DPOs declared on the stack.
Definition: dpo.h:197
#define FIB_PATH_DBG(_p, _fmt, _args...)
Definition: fib_path.c:429
adj_index_t adj_glean_add_or_lock(fib_protocol_t proto, vnet_link_t linkt, u32 sw_if_index, const ip46_address_t *nh_addr)
Glean Adjacency.
Definition: adj_glean.c:50
fib_node_index_t fib_path_create(fib_node_index_t pl_index, const fib_route_path_t *rpath)
Definition: fib_path.c:1272
u8 fp_weight
UCMP [unnormalised] weigth.
Definition: fib_path.c:238
One path from an [EU]CMP set that the client wants to add to a load-balance object.
Definition: load_balance.h:62
enum fib_path_cfg_flags_t_ fib_path_cfg_flags_t
Path config flags from the attributes.
u8 * format_dpo_proto(u8 *s, va_list *args)
format a DPO protocol
Definition: dpo.c:178
int fib_path_recursive_loop_detect(fib_node_index_t path_index, fib_node_index_t **entry_indicies)
Definition: fib_path.c:1795
A FIB graph nodes virtual function table.
Definition: fib_node.h:282
static fib_path_cfg_flags_t fib_path_route_flags_to_cfg_flags(const fib_route_path_t *rpath)
Definition: fib_path.c:1233
int dpo_is_drop(const dpo_id_t *dpo)
The Drop DPO will drop all packets, no questions asked.
Definition: drop_dpo.c:33
adj_index_t adj_mcast_add_or_lock(fib_protocol_t proto, vnet_link_t link_type, u32 sw_if_index)
Mcast Adjacency.
Definition: adj_mcast.c:51
adj_index_t adj_nbr_add_or_lock(fib_protocol_t nh_proto, vnet_link_t link_type, const ip46_address_t *nh_addr, u32 sw_if_index)
Neighbour Adjacency sub-type.
Definition: adj_nbr.c:218
void dpo_reset(dpo_id_t *dpo)
reset a DPO ID The DPO will be unlocked.
Definition: dpo.c:232
mpls_label_t fp_local_label
The local label to resolve through.
Definition: fib_path.c:278
#define vec_foreach(var, vec)
Vector iterator.
A path extension is a per-entry addition to the forwarding information when packets are sent for that...
Definition: fib_path_ext.h:98
fib_path_type_t_
Enurmeration of path types.
Definition: fib_path.c:52
Contribute an object that is to be used to forward non-end-of-stack MPLS packets. ...
Definition: fib_types.h:118
Attached path.
Definition: fib_types.h:336
void udp_encap_unlock(index_t uei)
Definition: udp_encap.c:162
#define pool_foreach_index(i, v, body)
Iterate pool by index.
Definition: pool.h:538
u8 * fib_node_children_format(fib_node_list_t list, u8 *s)
Definition: fib_node.c:176
struct fib_path_t_::@146::@153 bier_fmask
u8 fp_preference
A path preference.
Definition: fib_path.c:245
u8 frp_weight
[un]equal cost path weight
Definition: fib_types.h:579
fib_source_t fib_entry_get_best_source(fib_node_index_t entry_index)
Definition: fib_entry.c:1458
struct fib_path_t_::@146::@162 classify
u32 frp_udp_encap_id
UDP encap ID.
Definition: fib_types.h:559
#define ip46_address_is_zero(ip46)
Definition: ip6_packet.h:93
Contribute an object that is to be used to forward IP4 packets.
Definition: fib_types.h:133
u32 bier_fmask_child_add(fib_node_index_t bfmi, fib_node_type_t child_type, fib_node_index_t child_index)
Definition: bier_fmask.c:141
void bier_imp_unlock(index_t bii)
Definition: bier_imp.c:110
u32 frp_fib_index
The FIB index to lookup the nexthop Only valid for recursive paths.
Definition: fib_types.h:531
void vlib_cli_output(vlib_main_t *vm, char *fmt,...)
Definition: cli.c:768
fib_forward_chain_type_t fib_forw_chain_type_from_dpo_proto(dpo_proto_t proto)
Convert from a payload-protocol to a chain type.
Definition: fib_types.c:321
void fib_path_destroy(fib_node_index_t path_index)
Definition: fib_path.c:1500
#define FOR_EACH_FIB_PATH_CFG_ATTRIBUTE(_item)
Definition: fib_path.h:129
static int fib_path_cmp_i(const fib_path_t *path1, const fib_path_t *path2)
Definition: fib_path.c:1539
const ip46_address_t zero_addr
Definition: lookup.c:319
int fib_path_cmp_w_route_path(fib_node_index_t path_index, const fib_route_path_t *rpath)
Definition: fib_path.c:1673
uword unformat(unformat_input_t *i, const char *fmt,...)
Definition: unformat.c:978
fib_route_path_t fpe_path
A description of the path that is being extended.
Definition: fib_path_ext.h:105
fib_path_list_walk_rc_t fib_path_encode(fib_node_index_t path_list_index, fib_node_index_t path_index, const fib_path_ext_t *path_ext, void *args)
Definition: fib_path.c:2692
void udp_encap_contribute_forwarding(index_t uei, dpo_proto_t proto, dpo_id_t *dpo)
Definition: udp_encap.c:131
static fib_node_t * fib_path_get_node(fib_node_index_t index)
Definition: fib_path.c:451
struct fib_path_t_::@146::@161 udp_encap
enum mpls_eos_bit_t_ mpls_eos_bit_t
index_t fp_bier_fib
The BIER FIB the fmask is in.
Definition: fib_path.c:293
fib_entry_flag_t fib_entry_get_flags(fib_node_index_t fib_entry_index)
Definition: fib_entry.c:302
static uword pool_elts(void *v)
Number of active elements in a pool.
Definition: pool.h:128