
CSIT REPORT
Release rls1901_3

Aug 07, 2019

Contents

1 Introduction 11.1 Report History . 11.2 Report Structure . 11.3 Test Scenarios . 31.4 Physical Testbeds . 41.5 Test Methodology . 9
2 VPP Performance 302.1 Overview . 302.2 Release Notes . 362.3 Packet Throughput . 382.4 Speedup Multi-Core . 522.5 Packet Latency . 602.6 Comparisons . 682.7 Throughput Trending . 692.8 Test Environment . 702.9 Documentation . 88
3 DPDK Performance 963.1 Overview . 963.2 Release Notes . 983.3 Packet Throughput . 993.4 Packet Latency . 1573.5 Comparisons . 1883.6 Throughput Trending . 1903.7 Test Environment . 1913.8 Documentation . 206
4 VPP Device 2074.1 Overview . 2074.2 Release Notes . 2104.3 Integration Tests . 2114.4 Documentation . 219
5 VPP Functional 2205.1 Overview . 2205.2 Release Notes . 2235.3 Test Environment . 2245.4 Documentation . 234
6 CSIT Framework 235

i

6.1 Design . 2356.2 Test Naming . 2396.3 Presentation and Analytics . 2416.4 CSIT RF Tags Descriptions . 268
Bibliography 282

ii

CHAPTER1

Introduction

1.1 Report History

FD.io CSIT-1901.3 Report history and per .[ww] revision changes are listed below.
.[ww] Revision Changes.32 Initial version

FD.io CSIT Reports followCSIT-[yy][mm].[ww] numbering format, with version denoted by concatenationof two digit year [yy] and two digit month [mm], and maintenance revision identified by two digit calendarweek number [ww].

1.2 Report Structure

FD.io CSIT-1901.3 report contains system performance and functional testing data of VPP-19.01.3 re-lease. PDF version of this report1 is available for download.
CSIT-1901.3 report is structured as follows:

1. INTRODUCTION: General introduction to FD.io CSIT-1901.3.
• Introduction: This section.
• Test Scenarios Overview: A brief overview of test scenarios covered in this report.
• Physical Testbeds: Description of physical testbeds.
• Test Methodology: Performance benchmarking and functional test methodologies.

2. VPP PERFORMANCE: VPP performance tests executed in physical FD.io testbeds.
• Overview: Tested logical topologies, test coverage and naming specifics.
• Release Notes: Changes in CSIT-1901.3, added tests, environment or methodology changes,known issues.
• Packet Throughput: NDR, PDR throughput graphs based on results from repeated same testjob executions to verify repeatibility of measurements.

1 https://docs.fd.io/csit/rls1901_3/report/_static/archive/csit_rls1901_3.32.pdf

1

https://docs.fd.io/csit/rls1901_3/report/_static/archive/csit_rls1901_3.32.pdf

CSIT REPORT, Release rls1901_3

• SpeedupMulti-Core: NDR, PDR throughput multi-core speedup graphs based on results fromtest job executions.
• Packet Latency: Latency graphs based on results from test job executions.
• Soak Tests: Long duration soak tests are executed using PLRsearch algorithm.
• NFV Service Density: Network Function Virtualization (NFV) service density tests focus onmeasuring total per server throughput at varied NFV service “packing” densities with vswitchproviding host dataplane.
• Comparisons: Performance comparisons betweenVPP releases and between different testbedtypes.
• Throughput Trending: References to continuous VPP performance trending.
• Test Environment: Performance test environment configuration.
• Documentation: Documentation of K8s Pod/Container orchestration in CSIT and pointers toCSIT source code documentation for VPP performance tests.

3. DPDK PERFORMANCE: DPDK performance tests executed in physical FD.io testbeds.
• Overview: Tested logical topologies, test coverage.
• Release Notes: Changes in CSIT-1901.3, known issues.
• Packet Throughput: NDR, PDR throughput graphs based on results from repeated same testjob executions to verify repeatibility of measurements.
• Packet Latency: Latency graphs based on results from test job executions.
• Comparisons: Performance comparisons between DPDK releases and between differenttestbed types.
• Throughput Trending: References to regular DPDK performance trending.
• Test Environment: Performance test environment configuration.
• Documentation: Pointers to CSIT source code documentation for DPDK performance tests.

4. VPP DEVICE: VPP functional tests executed in physical FD.io testbeds using containers.
• Overview: Tested virtual topologies, test coverage and naming specifics;
• Release Notes: Changes in CSIT-1901.3, added tests, environment or methodology changes,known issues.
• Integration Tests: Functional test environment configuration.
• Documentation: Pointers to CSIT source code documentation for VPP functional tests.

5. VPP FUNCTIONAL: VPP functional tests executed in virtual FD.io testbeds.
• Overview: Tested virtual topologies, test coverage and naming specifics;
• Release Notes: Changes in CSIT-1901.3, added tests, environment or methodology changes,known issues.
• Test Environment: Functional test environment configuration.
• Documentation: Pointers to CSIT source code documentation for VPP functional tests.

6. HONEYCOMB FUNCTIONAL: Honeycomb functional tests executed in virtual FD.io testbeds.
• Overview: Tested virtual topologies, test coverage and naming specifics;
• Release Notes: Changes in CSIT-1901.3, known issues.
• Test Environment: Functional test environment configuration.
• Documentation: Pointers to CSIT source code documentation forHoneycomb functional tests.

7. DMM FUNCTIONAL: DMM functional tests executed in virtual FD.io testbeds.

2 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

• Overview: Tested virtual topologies, test coverage and naming specifics;
• Release Notes: Changes in CSIT-1901.3, known issues.
• Test Environment: Functional test environment configuration.
• Documentation: Pointers to CSIT source code documentation for DMM functional tests.

8. DETAILED RESULTS: Detailed result tables auto-generated from CSIT test job executions using RF(Robot Framework) output files as sources.
• VPP Performance NDR/PDR: VPP NDR/PDR throughput and latency.
• VPP Performance MRR: VPP MRR throughput.
• VPP K8s Container Memif: VPP K8s Container/Pod topologies NDR/PDR throughput.
• DPDK Performance: DPDK Testpmd and L3fwd NDR/PDR throughput and latency.
• VPP Functional: Detailed VPP functional results.
• Honeycomb Functional: Detailed HoneyComb functional results.
• DMM Functional: Detailed DMM functional results.

9. TEST CONFIGURATION: VPP DUT configuration data based on VPP API Test (VAT) CommandsHistory auto-generated from CSIT test job executions using RF output files as sources.
• VPP Performance NDR/PDR: Configuration data.
• VPP Performance MRR: Configuration data.
• VPP K8s Container Memif: Configuration data.
• VPP Functional: Configuration data.

10. TEST OPERATIONAL DATA: VPP DUT operational data auto-generated from CSIT test job execu-tions using RFoutput files as sources.
• VPP Performance NDR/PDR: VPP show run outputs under test load.

11. CSIT FRAMEWORK DOCUMENTATION: Description of the overall FD.io CSIT framework.
• Design: Framework modular design hierarchy.
• Test naming: Test naming convention.
• Presentation and Analytics Layer: Description of PAL CSIT analytics module.
• CSIT RF Tags Descriptions: CSIT RF Tags used for test suite and test case grouping and selec-tion.

1.3 Test Scenarios

FD.io CSIT-1901.3 report includes multiple test scenarios of VPP centric applications, topologies and usecases. In addition it also covers baseline tests of DPDK sample applications. Tests are executed in physical(performance tests) and virtual environments (functional tests).
Brief overview of test scenarios covered in this report:

1. VPP Performance: VPP performance tests are executed in physical FD.io testbeds, focusing onVPP network data plane performance in NIC-to-NIC switching topologies. Tested across Intel XeonHaswell and Skylake servers, range of NICs (10GE, 25GE, 40GE) and multi- thread/multi-core con-figurations. VPP application runs in bare-metal host user-mode handling NICs. TRex is used as atraffic generator.
2. VPP Vhostuser Performance with KVM VMs: VPP VM service switching performance tests usingvhostuser virtual interface for interconnecting multiple Testpmd-in-VM instances. VPP vswitch in-stance runs in bare-metal user-mode handling NICs and connecting over vhost-user interfaces to

1.3. Test Scenarios 3

CSIT REPORT, Release rls1901_3

VM instances each running DPDK Testpmd with virtio virtual interfaces. Similarly to VPP Perfor-mance, tests are run across a range of configurations. TRex is used as a traffic generator.
3. VPP Memif Performance with LXC and Docker Containers: VPP Container service switching per-formance tests using memif virtual interface for interconnecting multiple VPP-in-container in-stances. VPP vswitch instance runs in bare-metal user-mode handling NICs and connecting overmemif (Slave side) interfaces to more instances of VPP running in LXC or in Docker Containers, bothwith memif interfaces (Master side). Similarly to VPP Performance, tests are run across a range ofconfigurations. TRex is used as a traffic generator.
4. K8s Container/Pod Topologies Performance: VPP container performance tests using memif forinterconnecting VPP-in- Container/Pod instances orchestrated by K8s integrated with Ligato2 forcontainer networking. TRex is used as a traffic generator.
5. DPDKPerformance: VPP uses DPDK to drive the NICs and physical interfaces. DPDK performancetests are used as a baseline to profile performance of theDPDK sub-system. TwoDPDKapplicationsare tested: Testpmd and L3fwd. DPDK tests are executed in the same testing environment as VPPtests. DPDK Testpmd and L3fwd applications run in host user-mode. TRex is used as a trafficgenerator.
6. VPPFunctional: VPP functional tests are executed in virtual FD.io testbeds, focusing on VPP packetprocessing functionality, including both network data plane and in-line control plane. Tests covervNIC-to-vNIC vNIC-to-nestedVM-to-vNIC forwarding topologies. Scapy is used as a traffic gener-ator.
7. Honeycomb Functional: Honeycomb functional tests are executed in virtual FD.io testbeds, fo-cusing on Honeycomb management and programming functionality of VPP. Tests cover a range ofCRUD operations executed against VPP.
8. DMM Functional: DMM functional tests are executed in virtual FD.io testbeds demonstrating asingle server (DUT1) and single client (DUT2) scenario using DMM framework and Linux kernelTCP/IP stack.

All CSIT test data included in this report is auto- generated from RF (Robot Framework) output.xml filesproduced by LF (Linux Foundation) FD.io Jenkins jobs executed against VPP-19.01.3 release artifacts.References are provided to the original FD.io Jenkins job results and all archived source files.
FD.io CSIT system is developed using two main coding platforms: RF and Python2.7. CSIT-1901.3source code for the executed test suites is available in CSIT branch rls1901_3 in the directory ./tests/
<name_of_the_test_suite>. A local copy of CSIT source code can be obtained by cloning CSIT git repos-itory - git clone https://gerrit.fd.io/r/csit.

1.4 Physical Testbeds

All FD.io (Fast Data Input/Ouput) CSIT (Continuous System Integration and Testing) performance testinglisted in this report are executed on physical testbeds built with bare-metal servers hosted by LF FD.ioproject. Two testbed topologies are used:
• 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server asTG (Traffic Generator), all connected in ring topology. Used for executing all of the data plane testsincluding overlay tunnels and IPSec tests.
• 2-Node Topology: Consisting of one server acting as SUTs (Systems Under Test) and one server asTG (Traffic Generator), both connected in ring topology. Used for execution of tests without anyoverlay tunnel encapsulations. Added in CSIT rls18.07.

Current FD.io production testbeds are built with servers based on two processor generations of IntelXeons: Haswell-SP (E5-2699v3) and Skylake (Platinum 8180). Testbeds built with servers based on Armprocessors are in the process of being added to FD.io production.
2 https://github.com/ligato

4 Chapter 1. Introduction

https://github.com/ligato

CSIT REPORT, Release rls1901_3

Server SUT and DUT performance depends on server and processor type, hence results for testbedsbased on different servers must be reported separately, and compared if appropriate.
Complete technical specifications of compute servers used in CSIT physical testbeds are maintained inFD.io CSIT repository: FD.io CSIT testbeds - Xeon Skylake, Arm, Atom3 and FD.io CSIT Testbeds - XeonHaswell4.
Following sections describe existing production testbed types.

1.4.1 3-Node Xeon Haswell (3n-hsw)

3n-hsw testbed is based on three CiscoUCS-c240m3 servers each equippedwith two Intel XeonHaswell-SP E5-2699v3 2.3 GHz 18 core processors. Physical testbed topology is depicted in a figure below.
3-Node Xeon Haswell (3n-hsw)

NIC6

Socket 1
Intel Xeon
E5-2699v3

NIC5NIC4

x8x8x8

Socket 0
Intel Xeon
E5-2699v3

NIC3NIC2NIC1

x8x8x8

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

QPI

x86
Server

NIC1

Socket 0
Intel Xeon
E5-2699v3

NIC2 NIC3

x8 x8 x8

DDR4

Socket 1
Intel Xeon
E5-2699v3

NIC4 NIC5 NIC6

x8 x8 x8

System Under Test 1 (SUT1)

PCIe
Gen3

QPI

x86
Server

NIC1

Socket 0
Intel Xeon
E5-2699v3

NIC2 NIC3

x8 x8 x8

DDR4

Socket 1
Intel Xeon
E5-2699v3

NIC4 NIC5 NIC6

x8 x8 x8

System Under Test 2 (SUT2)

PCIe
Gen3

QPI

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: VIC 1385 2p40GE Cisco.
2. NIC-2: NIC x520 2p10GE Intel.
3. NIC-3: empty.
4. NIC-4: NIC xl710-QDA2 2p40GE Intel.
5. NIC-5: NIC x710-DA2 2p10GE Intel.
6. NIC-6: QAT 8950 50G (Walnut Hill) Intel.

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: NIC xl710-QDA2 2p40GE Intel.
3 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_34 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

1.4. Physical Testbeds 5

https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

2. NIC-2: NIC x710-DA2 2p10GE Intel.
3. NIC-3: empty.
4. NIC-4: NIC xl710-QDA2 2p40GE Intel.
5. NIC-5: NIC x710-DA2 2p10GE Intel.
6. NIC-6: NIC x710-DA2 2p10GE Intel. (For self-tests.)

All Intel Xeon Haswell servers run with Intel Hyper-Threading disabled, making the number of logicalcores exposed to Linux match the number of 18 physical cores per processor socket.
Total of three 3n-hsw testbeds are in operation in FD.io labs.

1.4.2 3-Node Xeon Skylake (3n-skx)

3n-skx testbed is based on three SuperMicro SYS-7049GP-TRT servers each equipped with two IntelXeon Skylake Platinum 8180 2.5 GHz 28 core processors. Physical testbed topology is depicted in afigure below.
3-Node Xeon Skylake (3n-skx)

NIC6

Socket 1
Intel Xeon

Pla�num 8180

NIC5NIC4

x16x16x16

Socket 0
Intel Xeon

Pla�num 8180

NIC3NIC2NIC1

x16x16x16

x86
Server

Traffic Generator (TG)

DDR4

PCIe
Gen3

UPI

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test 1 (SUT1)

PCIe
Gen3

UPI

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test 2 (SUT2)

PCIe
Gen3

UPI

SUT1 and SUT2 servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: empty, future expansion.
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: empty, future expansion.

6 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

TG servers run T-Rex application and are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: empty, future expansion.
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.
Total of two 3n-skx testbeds are in operation in FD.io labs.

1.4.3 2-Node Xeon Skylake (2n-skx)

2n-skx testbed is based on two SuperMicro SYS-7049GP-TRT servers each equipped with two Intel XeonSkylake Platinum 8180 2.5 GHz 28 core processors. Physical testbed topology is depicted in a figurebelow.

1.4. Physical Testbeds 7

CSIT REPORT, Release rls1901_3

NIC6

Socket 1
Intel Xeon

Pla�num 8180

NIC5NIC4

x16x16x16

Socket 0
Intel Xeon

Pla�num 8180

NIC3NIC2NIC1

x16x16x16

x86
Server

2-Node Xeon Skylake (2n-skx)

Traffic Generator (TG)

DDR4

PCIe
Gen3

x86
Server

NIC1

Socket 0
Intel Xeon

Pla�num 8180

NIC2 NIC3

x16 x16 x16

DDR4

Socket 1
Intel Xeon

Pla�num 8180

NIC4 NIC5 NIC6

x16 x16 x16

System Under Test (SUT)

PCIe
Gen3

UPI

UPI

SUT servers are populated with the following NIC models:
1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.

8 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

6. NIC-6: empty, future expansion.
TG servers run T-Rex application and are populated with the following NIC models:

1. NIC-1: x710-DA4 4p10GE Intel.
2. NIC-2: xxv710-DA2 2p25GE Intel.
3. NIC-3: mcx556a-edat ConnectX5 2p100GE Mellanox. (Not used yet.)
4. NIC-4: empty, future expansion.
5. NIC-5: empty, future expansion.
6. NIC-6: x710-DA4 4p10GE Intel. (For self-tests.)

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.
Total of four 2n-skx testbeds are in operation in FD.io labs.

1.5 Test Methodology

1.5.1 VPP Forwarding Modes

VPP is tested in a number of L2 and IP packet lookup and forwarding modes. Within each mode baselineand scale tests are executed, the latter with varying number of lookup entries.
L2 Ethernet Switching

VPP is tested in three L2 forwarding modes:
• l2patch: L2 patch, the fastest point-to-point L2 path that loops packets between two interfaceswithout any Ethernet frame checks or lookups.
• l2xc: L2 cross-connect, point-to-point L2 path with all Ethernet frame checks, but no MAC learningand no MAC lookup.
• l2bd: L2 bridge-domain, multipoint-to-multipoint L2 path with all Ethernet frame checks, withMAClearning (unless static MACs are used) and MAC lookup.

l2bd tests are executed in baseline and scale configurations:
• l2bdbase: low number of L2 flows (254 per direction) is switched by VPP. They drive the content ofMAC FIB size (508 totalMAC entries). Both source and destinationMAC addresses are incrementedon a packet by packet basis.
• l2bdscale: high number of L2 flows is switched by VPP. Tested MAC FIB sizes include: i) 10k (5kunique flows per direction), ii) 100k (2x 50k flows) and iii) 1M (2x 500k). Both source and destina-tion MAC addresses are incremented on a packet by packet basis, ensuring new entries are learnrefreshed and looked up at every packet, making it the worst case scenario.

Ethernet wire encapsulations tested include: untagged, dot1q, dot1ad.
IPv4 Routing

IPv4 routing tests are executed in baseline and scale configurations:
• ip4base: low number of IPv4 flows (253 or 254 per direction) is routed by VPP. They drive thecontent of IPv4 FIB size (506 or 508 total /32 prefixes). Destination IPv4 addresses are incrementedon a packet by packet basis.

1.5. Test Methodology 9

CSIT REPORT, Release rls1901_3

• ip4scale: high number of IPv4 flows is routed by VPP. Tested IPv4 FIB sizes of /32 prefixes include:i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPv4addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up atevery packet, making it the worst case scenario.
IPv6 Routing

IPv6 routing tests are executed in baseline and scale configurations:
• ip6base: low number of IPv6 flows (253 or 254 per direction) is routed by VPP. They drive the con-tent of IPv6 FIB size (506 or 508 total /128 prefixes). Destination IPv6 addresses are incrementedon a packet by packet basis.
• ip6scale: high number of IPv6 flows is routed by VPP. Tested IPv6 FIB sizes of /128 prefixes include:i) 20k (10k unique flows per direction), ii) 200k (2x 100k flows) and iii) 2M (2x 1M). Destination IPv6addresses are incremented on a packet by packet basis, ensuring new FIB entries are looked up atevery packet, making it the worst case scenario.

SRv6 Routing

SRv6 routing tests are executed in a number of baseline configurations, in each case SR policy and steeringpolicy are configured for one direction and one (or two) SR behaviours (functions) in the other directions:
• srv6enc1sid: One SID (no SRH present), one SR function - End.
• srv6enc2sids: Two SIDs (SRH present), two SR functions - End and End.DX6.
• srv6enc2sids-nodecaps: Two SIDs (SRH present) without decapsulation, one SR function - End.
• srv6proxy-dyn: Dynamic SRv6 proxy, one SR function - End.AD.
• srv6proxy-masq: Masquerading SRv6 proxy, one SR function - End.AM.
• srv6proxy-stat: Static SRv6 proxy, one SR function - End.AS.

In all listed cases low number of IPv6 flows (253 per direction) is routed by VPP.

1.5.2 Tunnel Encapsulations

Tunnel encapsulations testing is grouped based on the type of outer header: IPv4 or IPv6.
IPv4 Tunnels

VPP is tested in the following IPv4 tunnel baseline configurations:
• ip4vxlan-l2bdbase: VXLAN over IPv4 tunnels with L2 bridge-domain MAC switching.
• ip4vxlan-l2xcbase: VXLAN over IPv4 tunnels with L2 cross-connect.
• ip4lispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.
• ip4lispip6-ip6base: LISP over IPv4 tunnels with IPv6 routing.

In all cases listed above low number of MAC, IPv4, IPv6 flows (254 or 253 per direction) is switched orrouted by VPP.
In addition selected IPv4 tunnels are tested at scale:

• dot1q–ip4vxlanscale-l2bd: VXLAN over IPv4 tunnels with L2 bridge- domain MAC switching, withscaled up dot1q VLANs (10, 100, 1k), mapped to scaled up L2 bridge-domains (10, 100, 1k), thatare in turn mapped to (10, 100, 1k) VXLAN tunnels. 64.5k flows are transmitted per direction.

10 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

IPv6 Tunnels

VPP is tested in the following IPv6 tunnel baseline configurations:
• ip6lispip4-ip4base: LISP over IPv4 tunnels with IPv4 routing.
• ip6lispip6-ip6base: LISP over IPv4 tunnels with IPv6 routing.

In all cases listed above low number of IPv4, IPv6 flows (253 per direction) is routed by VPP.

1.5.3 VPP Features

VPP is tested in a number of data plane feature configurations across different forwarding modes. Fol-lowing sections list features tested.
ACL Security-Groups

Both stateless and stateful access control lists (ACL), also known as security-groups, are supported byVPP.
Following ACL configurations are tested for MAC switching with L2 bridge-domains:

• l2bdbasemaclrn-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
• l2bdbasemaclrn-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.

Following ACL configurations are tested with IPv4 routing:
• ip4base-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.
• ip4base-oacl{E}sl-{F}flows: Output stateless ACL, with {E} entries and {F} flows.
• ip4base-iacl{E}sf-{F}flows: Input stateful ACL, with {E} entries and {F} flows.
• ip4base-oacl{E}sf-{F}flows: Output stateful ACL, with {E} entries and {F} flows.

ACL tests are executed with the following combinations of ACL entries and number of flows:
• ACL entry definitions

– flow non-matching deny entry: (src-ip4, dst-ip4, src-port, dst-port).
– flow matching permit ACL entry: (src-ip4, dst-ip4).

• {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50].
• {F} - number of UDP flows with different tuple (src-ip4, dst-ip4, src-port, dst-port), {F} = [100, 10k,100k].
• All {E}x{F} combinations are tested per ACL type, total of 9.

ACL MAC-IP

MAC-IP binding ACLs are tested for MAC switching with L2 bridge-domains:
• l2bdbasemaclrn-macip-iacl{E}sl-{F}flows: Input stateless ACL, with {E} entries and {F} flows.

MAC-IP ACL tests are executed with the following combinations of ACL entries and number of flows:
• ACL entry definitions

– flow non-matching deny entry: (dst-ip4, dst-mac, bit-mask)
– flow matching permit ACL entry: (dst-ip4, dst-mac, bit-mask)

1.5. Test Methodology 11

CSIT REPORT, Release rls1901_3

• {E} - number of non-matching deny ACL entries, {E} = [1, 10, 50]
• {F} - number of UDP flows with different tuple (dst-ip4, dst-mac), {F} = [100, 10k, 100k]
• All {E}x{F} combinations are tested per ACL type, total of 9.

NAT44

NAT44 is tested in baseline and scale configurations with IPv4 routing:
• ip4base-nat44: baseline test with single NAT entry (addr, port), single UDP flow.
• ip4base-udpsrcscale{U}-nat44: baseline test with {U} NAT entries (addr, {U}ports), {U}=15.
• ip4scale{R}-udpsrcscale{U}-nat44: scale tests with {R}*{U} NAT entries ({R}addr, {U}ports), {R}=[100,1k, 2k, 4k], {U}=15.

1.5.4 Data Plane Throughput

Network data plane packet and bandwidth throughput are measured in accordance with RFC 25445,using FD.io CSIT Multiple Loss Ratio search (MLRsearch), an optimized throughput search algorithm, thatmeasures SUT/DUT packet throughput rates at different Packet Loss Ratio (PLR) values.
Following MLRsearch values are measured across a range of L2 frame sizes and reported:

• NON DROP RATE (NDR): packet and bandwidth throughput at PLR=0%.
– Aggregate packet rate: NDR_LOWER <bi-directional packet rate> pps.
– Aggregate bandwidth rate: NDR_LOWER <bi-directional bandwidth rate> Gbps.

• PARTIAL DROP RATE (PDR): packet and bandwidth throughput at PLR=0.5%.
– Aggregate packet rate: PDR_LOWER <bi-directional packet rate> pps.
– Aggregate bandwidth rate: PDR_LOWER <bi-directional bandwidth rate> Gbps.

NDR and PDR are measured for the following L2 frame sizes (untagged Ethernet):
• IPv4 payload: 64B, IMIX (28x64B, 16x570B, 4x1518B), 1518B, 9000B.
• IPv6 payload: 78B, IMIX (28x78B, 16x570B, 4x1518B), 1518B, 9000B.

All rates are reported from external Traffic Generator perspective.

1.5.5 MLRsearch Tests

Multiple Loss Rate search (MLRsearch) tests use new search algorithm implemented in FD.io CSIT project.MLRsearch discovers multiple packet throughput rates in a single search, with each rate associated witha distinct Packet Loss Ratio (PLR) criteria. MLRsearch is being standardized in IETF with draft-vpolak-mkonstan-mlrsearch-XX6.
Two throughput measurements used in FD.io CSIT are Non-Drop Rate (NDR, with zero packet loss,PLR=0) and Partial Drop Rate (PDR, with packet loss rate not greater than the configured non-zero PLR).MLRsearch discovers NDR and PDR in a single pass reducing required execution time compared to sep-arate binary searches for NDR and PDR. MLRsearch reduces execution time even further by relying onshorter trial durations of intermediate steps, with only the final measurements conducted at the specifiedfinal trial duration. This results in the shorter overall search execution time when compared to a standardNDR/PDR binary search, while guaranteeing the same or similar results.
If needed, MLRsearch can be easily adopted to discover more throughput rates with different pre-definedPLRs.

5 https://tools.ietf.org/html/rfc2544.html6 https://tools.ietf.org/html/draft-vpolak-mkonstan-mlrsearch-00

12 Chapter 1. Introduction

https://tools.ietf.org/html/rfc2544.html
https://tools.ietf.org/html/draft-vpolak-mkonstan-mlrsearch-00
https://tools.ietf.org/html/draft-vpolak-mkonstan-mlrsearch-00

CSIT REPORT, Release rls1901_3

Note: All throughput rates are always bi-directional aggregates of two equal (symmetric) uni-directionalpacket rates received and reported by an external traffic generator.

Overview

The main properties of MLRsearch:
• MLRsearch is a duration aware multi-phase multi-rate search algorithm.

– Initial phase determines promising starting interval for the search.
– Intermediate phases progress towards defined final search criteria.
– Final phase executes measurements according to the final search criteria.

• Initial phase:
– Uses link rate as a starting transmit rate and discovers the Maximum Receive Rate (MRR) usedas an input to the first intermediate phase.

• Intermediate phases:
– Start with initial trial duration (in the first phase) and converge geometrically towards the finaltrial duration (in the final phase).
– Track two values for NDR and two for PDR.

* The values are called (NDR or PDR) lower_bound and upper_bound.
* Each value comes from a specific trial measurement (most recent for that transmit rate),and as such the value is associated with that measurement’s duration and loss.
* A bound can be invalid, for example if NDR lower_bound has beenmeasuredwith nonzeroloss.
* Invalid bounds are not real boundaries for the searched value, but are needed to trackinterval widths.
* Valid bounds are real boundaries for the searched value.
* Each non-initial phase ends with all bounds valid.

– Start with a large (lower_bound, upper_bound) interval width and geometrically converge to-wards the width goal (measurement resolution) of the phase. Each phase halves the previouswidth goal.
– Use internal and external searches:

* External search - measures at transmit rates outside the (lower_bound, upper_bound) in-terval. Activated when a bound is invalid, to search for a new valid bound by doubling theinterval width. It is a variant of exponential search7.
* Internal search - binary search8, measures at transmit rates within the (lower_bound, up-per_bound) valid interval, halving the interval width.

• Final phase is executed with the final test trial duration, and the final width goal that determinesresolution of the overall search. Intermediate phases together with the final phase are called non-initial phases.
The main benefits of MLRsearch vs. binary search include:

• In general MLRsearch is likely to execute more search trials overall, but less trials at a set finalduration.
7 https://en.wikipedia.org/wiki/Exponential_search8 https://en.wikipedia.org/wiki/Binary_search

1.5. Test Methodology 13

https://en.wikipedia.org/wiki/Exponential_search
https://en.wikipedia.org/wiki/Binary_search

CSIT REPORT, Release rls1901_3

• In well behaving cases it greatly reduces (>50%) the overall duration compared to a single PDR (orNDR) binary search duration, while finding multiple drop rates.
• In all cases MLRsearch yields the same or similar results to binary search.
• Note: both binary search andMLRsearch are susceptible to reporting non-repeatable results acrossmultiple runs for very bad behaving cases.

Caveats:
• Worst case MLRsearch can take longer than a binary search e.g. in case of drastic changes in be-haviour for trials at varying durations.

Search Implementation

Following is a brief description of the current MLRsearch implementation in FD.io CSIT.
Input Parameters

1. maximum_transmit_rate - maximum packet transmit rate to be used by external traffic generator,limited by either the actual Ethernet link rate or traffic generator NIC model capabilities. Sampledefaults: 2 * 14.88 Mpps for 64B 10GE link rate, 2 * 18.75 Mpps for 64B 40GE NIC maximum rate.
2. minimum_transmit_rate - minimum packet transmit rate to be used for measurements. MLRsearchfails if lower transmit rate needs to be used to meet search criteria. Default: 2 * 10 kpps (could behigher).
3. final_trial_duration - required trial duration for final rate measurements. Default: 30 sec.
4. initial_trial_duration - trial duration for initial MLRsearch phase. Default: 1 sec.
5. final_relative_width - required measurement resolution expressed as (lower_bound, upper_bound)interval width relative to upper_bound. Default: 0.5%.
6. packet_loss_ratio - maximum acceptable PLR search criteria for PDR measurements. Default: 0.5%.
7. number_of_intermediate_phases - number of phases between the initial phase and the final phase.Impacts the overall MLRsearch duration. Less phases are required for well behaving cases, morephases may be needed to reduce the overall search duration for worse behaving cases. Default (2).(Value chosen based on limited experimentation to date. More experimentation needed to arriveto clearer guidelines.)

Initial Phase

1. First trial measures at maximum rate and discovers MRR.
(a) in: trial_duration = initial_trial_duration.
(b) in: offered_transmit_rate = maximum_transmit_rate.
(c) do: single trial.
(d) out: measured loss ratio.
(e) out: mrr = measured receive rate.

2. Second trial measures at MRR and discovers MRR2.
(a) in: trial_duration = initial_trial_duration.
(b) in: offered_transmit_rate = MRR.
(c) do: single trial.
(d) out: measured loss ratio.

14 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

(e) out: mrr2 = measured receive rate.
3. Third trial measures at MRR2.

(a) in: trial_duration = initial_trial_duration.
(b) in: offered_transmit_rate = MRR2.
(c) do: single trial.
(d) out: measured loss ratio.

Non-initial Phases

1. Main loop:
(a) in: trial_duration for the current phase. Set to initial_trial_duration for the first interme-diate phase; to final_trial_duration for the final phase; or to the element of interpolat-ing geometric sequence for other intermediate phases. For example with two intermedi-ate phases, trial_duration of the second intermediate phase is the geometric average of ini-tial_strial_duration and final_trial_duration.
(b) in: relative_width_goal for the current phase. Set to final_relative_width for the final phase;doubled for each preceding phase. For example with two intermediate phases, the first inter-mediate phase uses quadruple of final_relative_width and the second intermediate phase usesdouble of final_relative_width.
(c) in: ndr_interval, pdr_interval from the previous main loop iteration or the previous phase. Ifthe previous phase is the initial phase, both intervals have lower_bound = MRR2, uper_bound= MRR. Note that the initial phase is likely to create intervals with invalid bounds.
(d) do: According to the procedure described in point 2, either exit the phase (by jumping to 1.g.),or prepare new transmit rate to measure with.
(e) do: Perform the trial measurement at the new transmit rate and trial_duration, compute itsloss ratio.
(f) do: Update the bounds of both intervals, based on the new measurement. The actual updaterules are numerous, as NDR external search can affect PDR interval and vice versa, but theresult agrees with rules of both internal and external search. For example, any new measure-ment below an invalid lower_bound becomes the new lower_bound, while the old measure-ment (previously acting as the invalid lower_bound) becomes a new and valid upper_bound.Go to next iteration (1.c.), taking the updated intervals as new input.
(g) out: current ndr_interval and pdr_interval. In the final phase this is also considered to be theresult of the whole search. For other phases, the next phase loop is started with the currentresults as an input.

2. New transmit rate (or exit) calculation (for 1.d.):
• If there is an invalid bound then prepare for external search:

– If the most recent measurement at NDR lower_bound transmit rate had the loss higherthan zero, then the new transmit rate is NDR lower_bound decreased by twoNDR intervalwidths.
– Else, if the most recent measurement at PDR lower_bound transmit rate had the losshigher than PLR, then the new transmit rate is PDR lower_bound decreased by two PDRinterval widths.
– Else, if the most recent measurement at NDR upper_bound transmit rate had no loss, thenthe new transmit rate is NDR upper_bound increased by two NDR interval widths.
– Else, if themost recentmeasurement at PDR upper_bound transmit rate had the loss loweror equal to PLR, then the new transmit rate is PDR upper_bound increased by two PDRinterval widths.

1.5. Test Methodology 15

CSIT REPORT, Release rls1901_3

• If interval width is higher than the current phase goal:
– Else, if NDR interval does not meet the current phase width goal, prepare for internalsearch. The new transmit rate is (NDR lower bound + NDR upper bound) / 2.
– Else, if PDR interval does not meet the current phase width goal, prepare for internalsearch. The new transmit rate is (PDR lower bound + PDR upper bound) / 2.

• Else, if some bound has still only been measured at a lower duration, prepare to re-measure atthe current duration (and the same transmit rate). The order of priorities is:
– NDR lower_bound,
– PDR lower_bound,
– NDR upper_bound,
– PDR upper_bound.

• Else, do not prepare any new rate, to exit the phase. This ensures that at the end of eachnon-initial phase all intervals are valid, narrow enough, and measured at current phase trialduration.
Implementation Deviations

This document so far has been describing a simplified version of MLRsearch algorithm. The full algorithmas implemented contains additional logic, which makes some of the details (but not general ideas) aboveincorrect. Here is a short description of the additional logic as a list of principles, explaining their maindifferences from (or additions to) the simplified description,but without detailing their mutual interaction.
1. Logarithmic transmit rate. In order to better fit the relative width goal, the interval doubling andhalving is done differently. For example, the middle of 2 and 8 is 4, not 5.
2. Optimistic maximum rate. The increased rate is never higher than the maximum rate. Upper boundat that rate is always considered valid.
3. Pessimistic minimum rate. The decreased rate is never lower than theminimum rate. If a lower boundat that rate is invalid, a phase stops refining the interval further (until it gets re-measured).
4. Conservative interval updates. Measurements above current upper bound never update a valid upperbound, even if drop ratio is low. Measurements below current lower bound always update any lowerbound if drop ratio is high.
5. Ensure sufficient interval width. Narrow intervals make external search take more time to find a validbound. If the new transmit increased or decreased rate would result in width less than the currentgoal, increase/decrease more. This can happen if the measurement for the other interval makes thecurrent interval too narrow. Similarly, take care the measurements in the initial phase create wideenough interval.
6. Timeout for bad cases. The worst case for MLRsearch is when each phase converges to intervalsway different than the results of the previous phase. Rather than suffer total search time severaltimes larger than pure binary search, the implemented tests fail themselves when the search takestoo long (given by argument timeout).

1.5.6 (B)MRR Throughput

Maximum Receive Rate (MRR) tests are complementary to MLRsearch tests, as they provide a maximum“raw” throughput benchmark for development and testing community. MRR tests measure the packetforwarding rate under the maximum load offered by traffic generator over a set trial duration, regardlessof packet loss. Maximum load for specified Ethernet frame size is set to the bi-directional link rate.
In CSIT-1901.3MRR test code has been updatedwith a configurable burstMRR parameters: trial durationand number of trials in a single burst. This enabled a new Burst MRR (BMRR) methodology for moreprecise performance trending.

16 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

Current parameters for BMRR tests:
• Ethernet frame sizes: 64B (78B for IPv6), IMIX, 1518B, 9000B; all quoted sizes include frame CRC,but exclude per frame transmission overhead of 20B (preamble, inter frame gap).
• Maximum load offered: 10GE, 25GE and 40GE link (sub-)rates depending on NIC tested, with theactual packet rate depending on frame size, transmission overhead and traffic generator NIC for-warding capacity.

– For 10GE NICs the maximum packet rate load is 2* 14.88 Mpps for 64B, a 10GE bi-directionallink rate.
– For 25GE NICs the maximum packet rate load is 2* 18.75 Mpps for 64B, a 25GE bi-directionallink sub-rate limited by TG 25GE NIC used, XXV710.
– For 40GE NICs the maximum packet rate load is 2* 18.75 Mpps for 64B, a 40GE bi-directionallink sub-rate limited by TG 40GE NIC used, XL710. Packet rate for other tested frame sizes islimited by PCIe Gen3 x8 bandwidth limitation of ~50Gbps.

• Trial duration: 1 sec.
• Number of trials per burst: 10.

Similarly to NDR/PDR throughput tests, MRR test should be reporting bi-directional link rate (or NIC rate,if lower) if tested VPP configuration can handle the packet rate higher than bi-directional link rate, e.g.large packet tests and/or multi-core tests.
MRR tests are currently used for FD.io CSIT continuous performance trending and for comparison be-tween releases. Daily trending job tests subset of frame sizes, focusing on 64B (78B for IPv6) for all testsand IMIX for selected tests (vhost, memif).
MRR-like measurements are being used to establish starting conditions for experimental ProbabilisticLoss Ratio Search (PLRsearch) used for soak testing, aimed at verifying continuous system performanceover an extended period of time, hours, days, weeks, months. PLRsearch code is currently in experimentalphase in FD.io CSIT project.

1.5.7 Packet Latency

TRex Traffic Generator (TG) is used for measuring latency of VPP DUTs. Reported latency values aremeasured using following methodology:
• Latency tests are performed at 100% of discovered NDR and PDR rates for each throughput testand packet size (except IMIX).
• TG sends dedicated latency streams, one per direction, each at the rate of 9 kpps at the prescribedpacket size; these are sent in addition to the main load streams.
• TG reports min/avg/max latency values per stream direction, hence two sets of latency values arereported per test case; future release of TRex is expected to report latency percentiles.
• Reported latency values are aggregate across two SUTs if the three node topology is used for givenperformance test; for per SUT latency, reported value should be divided by two.
• 1usec is the measurement accuracy advertised by TRex TG for the setup used in FD.io labs used byCSIT project.
• TRex setup introduces an always-on error of about 2*2usec per latency flow additonal Tx/Rx in-terface latency induced by TRex SW writing and reading packet timestamps on CPU cores withoutHW acceleration on NICs closer to the interface line.

1.5.8 Multi-Core Speedup

All performance tests are executed with single processor core and with multiple cores scenarios.

1.5. Test Methodology 17

CSIT REPORT, Release rls1901_3

Intel Hyper-Threading (HT)

Intel Xeon processors used in FD.io CSIT can operate either in HT Disabled mode (single logical core pereach physical core) or in HT Enabled mode (two logical cores per each physical core). HT setting is appliedin BIOS and requires server SUT reload for it to take effect, making it impractical for continuous changesof HT mode of operation.
CSIT-1901.3 performance tests are executed with server SUTs’ Intel XEON processors configured withIntel Hyper-Threading Disabled for all Xeon Haswell testbeds (3n-hsw) and with Intel Hyper-ThreadingEnabled for all Xeon Skylake testbeds.
More information about physical testbeds is provided in Physical Testbeds (page 4).
Multi-core Tests

CSIT-1901.3 multi-core tests are executed in the following VPP worker thread and physical core config-urations:
1. Intel Xeon Haswell testbeds (3n-hsw) with Intel HT disabled (1 logical CPU core per each physicalcore):
1. 1t1c - 1 VPP worker thread on 1 physical core.
2. 2t2c - 2 VPP worker threads on 2 physical cores.
3. 4t4c - 4 VPP worker threads on 4 physical cores.
1. Intel Xeon Skylake testbeds (2n-skx, 3n-skx) with Intel HT enabled (2 logical CPU cores per eachphysical core):
1. 2t1c - 2 VPP worker threads on 1 physical core.
2. 4t2c - 4 VPP worker threads on 2 physical cores.
3. 8t4c - 8 VPP worker threads on 4 physical cores.

VPP worker threads are the data plane threads running on isolated logical cores. With Intel HT enabledVPP workers are placed as sibling threads on each used physical core. VPP control threads (main, stats)are running on a separate non-isolated core together with other Linux processes.
In all CSIT tests care is taken to ensure that each VPPworker handles the same amount of received packetload and does the same amount of packet processing work. This is achieved by evenly distributing perinterface type (e.g. physical, virtual) receive queues over VPP workers using default VPP round-robinmapping and by loading these queues with the same amount of packet flows.
If number of VPP workers is higher than number of physical or virtual interfaces, multiple receive queuesare configured on each interface. NIC Receive Side Scaling (RSS) for physical interfaces and multi-queuefor virtual interfaces are used for this purpose.
Section Speedup Multi-Core (page 52) includes a set of graphs illustrating packet throughout speedupwhen running VPP worker threads on multiple cores. Note that in quite a few test cases running VPPworkers on 2 or 4 physical cores hits the I/O bandwidth or packets-per-second limit of tested NIC.

1.5.9 VPP Startup Settings

CSIT code manipulates a number of VPP settings in startup.conf for optimized performance. List of com-mon settings applied to all tests and test dependent settings follows.
See VPP startup.conf9 for a complete set and description of listed settings.

9 https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/1901_3

18 Chapter 1. Introduction

https://git.fd.io/vpp/tree/src/vpp/conf/startup.conf?h=stable/1901_3

CSIT REPORT, Release rls1901_3

Common Settings

List of vpp startup.conf settings applied to all tests:
1. heap-size <value> - set separately for ip4, ip6, stats, main depending on scale tested.
2. no-tx-checksum-offload - disables UDP / TCP TX checksum offload in DPDK. Typically needed foruse faster vector PMDs (together with no-multi-seg).
3. socket-mem<value>,<value> -memory per numa. (Not required anymore due toVPP code changes,will be removed in CSIT-19.04.)

Per Test Settings

List of vpp startup.conf settings applied dynamically per test:
1. corelist-workers <list_of_cores> - list of logical cores to run VPP worker data plane threads. De-pends on HyperThreading and core per test configuration.
2. num-rx-queues <value> - depends on a number of VPP threads and NIC interfaces.
3. num-rx-desc/num-tx-desc - number of rx/tx descriptors for specificNICs, incl. xl710, x710, xxv710.
4. num-mbufs <value> - increases number of buffers allocated, needed only in scenarios with largenumber of interfaces and worker threads. Value is per CPU socket. Default is 16384.
5. no-multi-seg - disables multi-segment buffers in DPDK, improves packet throughput, but disablesJumbo MTU support. Disabled for all tests apart from the ones that require Jumbo 9000B framesupport.
6. UIO driver - depends on topology file definition.
7. QAT VFs - depends on NRThreads, each thread = 1QAT VFs.

1.5.10 KVM VMs vhost-user

FD.io CSIT performance lab is testing VPP vhost with KVM VMs using following environment settings:
• Tests with varying Qemu virtio queue (a.k.a. vring) sizes: [vr1024] 1024 descriptors to optimize forpacket throughput.
• Tests with varying Linux CFS (Completely Fair Scheduler) settings: [cfs] default settings, [cfsrr1] CFSRoundRobin(1) policy applied to all data plane threads handling test packet path including all VPPworker threads and all Qemu testpmd poll-mode threads.
• Resulting test cases are all combinations with [vr1024] and [cfs,cfsrr1] settings.
• Adjusted Linux kernel CFS scheduler policy for data plane threads used in CSIT is documented inCSIT Performance Environment Tuning wiki10.
• The purpose is to verify performance impact (MRR and NDR/PDR throughput) and same test mea-surements repeatability, by making VPP and VM data plane threads less susceptible to other LinuxOS system tasks hijacking CPU cores running those data plane threads.

1.5.11 LXC/DRC Container Memif

CSIT includes tests taking advantage of VPP memif virtual interface (shared memory interface) to inter-connect VPP running in Containers. VPP vswitch instance runs in bare-metal user-mode handling NICinterfaces and connecting over memif (Slave side) to VPPs running in Linux Container (LXC) or in DockerContainer (DRC) configured with memif (Master side). LXCs and DRCs run in a priviliged mode with VPP
10 https://wiki.fd.io/view/CSIT/csit-perf-env-tuning-ubuntu1604

1.5. Test Methodology 19

https://wiki.fd.io/view/CSIT/csit-perf-env-tuning-ubuntu1604

CSIT REPORT, Release rls1901_3

data plane worker threads pinned to dedicated physical CPU cores per usual CSIT practice. All VPP in-stances run the same version of software. This test topology is equivalent to existing tests with vhost-userand VMs as described earlier in Logical Topologies (page 30).
In addition to above vswitch tests, a single memif interface test is executed. It runs in a simple topologyof two VPP container instances connected over memif interface in order to verify standalone memifinterface performance.
More information about CSIT LXC and DRC setup and control is available in Container Orchestration in
CSIT (page 88).

1.5.12 K8s Container Memif

CSIT includes tests of VPP topologies running in K8s orchestrated Pods/Containers and connected overmemif virtual interfaces. In order to provide simple topology coding flexibility and extensibility containerorchestration is done with Kubernetes11 using Docker12 images for all container applications includingVPP. Ligato13 is used for the Pod/Container networking orchestration that is integrated with K8s, includ-ing memif support.
In these tests VPP vswitch runs in a K8s Pod with Docker Container (DRC) handling NIC interfaces andconnecting over memif tomore instances of VPP running in Pods/DRCs. All DRCs run in a priviligedmodewith VPP data plane worker threads pinned to dedicated physical CPU cores per usual CSIT practice. AllVPP instances run the same version of software. This test topology is equivalent to existing tests withvhost-user and VMs as described earlier in Physical Testbeds (page 4).
Further documentation is available in Container Orchestration in CSIT (page 88).

1.5.13 NFV Service Density

Network Function Virtualization (NFV) service density tests focus on measuring total per server through-put at varied NFV service “packing” densities with vswitch providing host dataplane. The goal is to com-pare and contrast performance of a shared vswitch for different network topologies and virtualizationtechnologies, and their impact on vswitch performance and efficiency in a range of NFV service configu-rations.
Each NFV service instance consists of a set of Network Functions (NFs), running in VMs (VNFs) or inContainers (CNFs), that are connected into a virtual network topology using VPP vswitch running in Linuxuser-mode. Multiple service instances share the vswitch that in turn provides per service chain forwardingcontext(s). In order to provide a most complete picture, each network topology and service configurationis tested in different service density setups by varying two parameters:

• Number of service instances (e.g. 1,2,4..10).
• Number of NFs per service instance (e.g. 1,2,4..10).

The initial implementation of NFV service density tests in CSIT-1901.3 is using two NF applications:
• VNF: DPDK L3fwd running in KVM VM, configured with /8 IPv4 prefix routing. L3fwd got cho-sen as a lightweight fast IPv4 VNF application, and follows CSIT approach of using DPDK sampleapplications in VMs for performance testing.
• CNF: VPP running in Docker Container, configured with /24 IPv4 prefix routing. VPP got chosen asa fast IPv4 NF application that supports required memif interface (L3fwd does not). This is similarto all other Container tests in CSIT that use VPP.

Tests are designed such that in all tested cases VPP vswitch is the most stressed application, as for eachflow vswitch is processing each packet multiple times, whereas VNFs and CNFs process each packetsonly once. To that end, all VNFs and CNFs are allocated enough resources to not become a bottleneck.
11 https://github.com/kubernetes12 https://github.com/docker13 https://github.com/ligato

20 Chapter 1. Introduction

https://github.com/kubernetes
https://github.com/docker
https://github.com/ligato

CSIT REPORT, Release rls1901_3

Service Configurations

Following NFV network topologies and configurations are tested:
• VNF Service Chains (VSC) with L2 vswitch

– Network Topology: Sets of VNFs dual-homed to VPP vswitch over virtio-vhost links. Each setbelongs to separate service instance.
– Network Configuration: VPP L2 bridge-domain contexts form logical service chains of VNF setsand connect each chain to physical interfaces.

• CNF Service Chains (CSC) with L2 vswitch
– Network Topology: Sets of CNFs dual-homed to VPP vswitch overmemif links. Each set belongsto separate service instance.
– Network Configuration: VPP L2 bridge-domain contexts form logical service chains of CNF setsand connect each chain to physical interfaces.

• CNF Service Pipelines (CSP) with L2 vswitch
– Network Topology: Sets of CNFs connected into pipelines over a series ofmemif links, with edgeCNFs single-homed to VPP vswitch over memif links. Each set belongs to separate serviceinstance.
– Network Configuration: VPP L2 bridge-domain contexts connect each CNF pipeline to physicalinterfaces.

Thread-to-Core Mapping

CSIT defines specific ratios for mapping software threads of vswitch and VNFs/CNFs to physical cores,with separate ratios defined for main control threads and data-plane threads.
In CSIT-1901.3 NFV service density tests run on Intel Xeon testbeds with Intel Hyper-Threading enabled,so each physical core is associated with a pair of sibling logical cores corresponding to the hyper-threads.
CSIT-1901.3 executes tests with the following software thread to physical core mapping ratios:

• vSwitch
– Data-plane on single core

* (data:core) = (1:1) => 2dt1c - 2 Data-plane Threads on 1 Core.
* (main:core) = (1:1) => 1mt1c - 1 Main Thread on 1 Core.

– Data-plane on two cores
* (data:core) = (1:2) => 4dt2c - 4 Data-plane Threads on 2 Cores.
* (main:core) = (1:1) => 1mt1c - 1 Main Thread on 1 Core.

• VNF and CNF
– Data-plane on single core

* (data:core) = (1:1) => 2dt1c - 2 Data-plane Threads on 1 Core per NF.
* (main:core) = (2:1) => 2mt1c - 2 Main Threads on 1 Core, 1 Thread per NF, core sharedbetween two NFs.

Maximum tested service densities are limited by a number of physical cores per NUMA. CSIT-1901.3allocates cores within NUMA0. Support for multi NUMA tests is to be added in future release.

1.5. Test Methodology 21

data:core
data:core
data:core

CSIT REPORT, Release rls1901_3

1.5.14 VPP_Device Functional

CSIT-1901.3 added new VPP_Device test environment for functional VPP device tests integrated intoLFN CI/CD infrastructure. VPP_Device tests run on 1-Node testbeds (1n-skx, 1n-arm) and rely on LinuxSRIOVVirtual Function (VF), dot1qVLAN tagging and external loopback cables to facilitate packet passingover exernal physical links. Initial focus is on few baseline tests. Existing CSIT VIRL tests can be moved toVPP_Device framework by changing L1 and L2 KW(s). RF test definition code stays unchanged with theexception of requiring adjustments from 3-Node to 2-Node logical topologies. CSIT VIRL to VPP_Devicemigration is expected in the next CSIT release.

1.5.15 IPSec on Intel QAT

VPP IPSec performance tests are usingDPDK cryptodev device driver in combinationwith HWcryptodevdevices - Intel QAT 8950 50G - present in LF FD.io physical testbeds. DPDK cryptodev can be used forall IPSec data plane functions supported by VPP.
Currently CSIT-1901.3 implements following IPSec test cases:

• AES-GCM, CBC-SHA1 ciphers, in combination with IPv4 routed-forwarding with Intel xl710 NIC.
• CBC-SHA1 ciphers, in combination with LISP-GPE overlay tunneling for IPv4-over-IPv4 with Intelxl710 NIC.

1.5.16 TRex Traffic Generator

Usage

TRex traffic generator14 is used for all CSIT performance tests. TRex stateless mode is used to measureNDR and PDR throughputs using MLRsearch and to measure maximum transer rate in MRR tests.
TRex is installed and run on the TG compute node. The typical procedure is:

• If the TRex is not already installed on TG, it is installed in the suite setup phase - see TRex intalla-tion15.
• TRex configuration is set in its configuration file

/etc/trex_cfg.yaml

• TRex is started in the background mode
$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.
→˓log 2>&1 &' > /dev/null

• There are traffic streams dynamically prepared for each test, based on traffic profiles. The traffic issent and the statistics obtained using trex_stl_lib.api.STLClient.
Measuring Packet Loss

Following sequence is followed to measure packet loss:
• Create an instance of STLClient.
• Connect to the client.
• Add all streams.
• Clear statistics.

14 https://wiki.fd.io/view/TRex15 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3

22 Chapter 1. Introduction

https://wiki.fd.io/view/TRex
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3
https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3

CSIT REPORT, Release rls1901_3

• Send the traffic for defined time.
• Get the statistics.

If there is a warm-up phase required, the traffic is sent also before test and the statistics are ignored.
Measuring Latency

If measurement of latency is requested, twomore packet streams are created (one for each direction) withTRex flow_stats parameter set to STLFlowLatencyStats. In that case, returned statistics will also includemin/avg/max latency values.

1.5.17 PLRsearch

Abstract algorithm

Eventually, a better description of the abstract search algorithm will appear at this IETF standard:plrsearch draft16.
Motivation

Network providers are interested in throughput a device can sustain.
RFC 254417 assumes loss ratio is given by a deterministic function of offered load. But NFV softwaredevices are not deterministic (enough). This leads for deterministic algorithms (such as MLRsearch withsingle trial) to return results, which when repeated show relatively high standard deviation, thus makingit harder to tell what “the throughput” actually is.
We need another algorithm, which takes this indeterminism into account.
Model

Each algorithm searches for an answer to a precisely formulated question. When the question involvesindeterministic systems, it has to specify probabilities (or prior distributions) which are tied to a specificprobabilistic model. Different models will have different number (and meaning) of parameters. Compli-cated (but more realistic) models have many parameters, and the math involved can be very convoluted.It is better to start with simpler probabilistic model, and only change it when the output of the simpleralgorithm is not stable or useful enough.
This document is focused on algorithms related to packet loss count only. No latency (or other infor-mation) is taken into account. For simplicity, only one type of measurement is considered: dynamicallycomputed offered load, constant within trial measurement of predetermined trial duration.
The main idea of the search apgorithm is to iterate trial measurements, using Bayesian inference18 tocompute both the current estimate of “the throughput” and the next offered load to measure at. Thecomputations are done in parallel with the trial measurements.
The following algorithm makes an assumption that packet traffic generator detects duplicate packets onreceive detection, and reports this as an error.

16 https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-0017 https://tools.ietf.org/html/rfc254418 https://en.wikipedia.org/wiki/Bayesian_statistics

1.5. Test Methodology 23

https://tools.ietf.org/html/draft-vpolak-bmwg-plrsearch-00
https://tools.ietf.org/html/rfc2544
https://en.wikipedia.org/wiki/Bayesian_statistics

CSIT REPORT, Release rls1901_3

Poisson distribution

For given offered load, number of packets lost during trial measurement is assumed to come from Poissondistribution19, each trial is assumed to be independent, and the (unknown) Poisson parameter (averagenumber of packets lost per second) is assumed to be constant across trials.
When comparing different offered loads, the average loss per second is assumed to increase, but the(deterministic) function from offered load into average loss rate is otherwise unknown. This is called “lossfunction”.
Given a target loss ratio (configurable), there is an unknown offered load when the average is exactly that.We call that the “critical load”. If critical load seems higher than maximum offerable load, we should usethe maximum offerable load to make search output more conservative.
Side note: Binomial distribution20 is a better fit compared to Poisson distribution (acknowledging that thenumber of packets lost cannot be higher than the number of packets offered), but the difference tends tobe relevant in loads far above the critical region, so using Poisson distribution helps the algorithm focuson critical region better.
Of course, there are great many increasing functions (as candidates for loss function). The offered loadhas to be chosen for each trial, and the computed posterior distribution of critical load changes with eachtrial result.
To make the space of possible functions more tractable, some other simplifying assumptions are needed.As the algorithm will be examining (also) loads close to the critical load, linear approximation to the lossfunction in the critical region is important. But as the search algorithm needs to evaluate the functionalso far away from the critical region, the approximate function has to be well-behaved for every positiveoffered load, specifically it cannot predict non-positive packet loss rate.
Within this document, “fitting function” is the name for such awell-behaved function, which approximatesthe unknown loss function in the critical region.
Results from trials far from the critical region are likely to affect the critical rate estimate negatively, as thefitting function does not need to be a good approximation there. Discarding some results, or “suppressing”their impact with ad-hoc methods (other than using Poisson distribution instead of binomial) is not used,as such methods tend to make the overall search unstable. We rely on most of measurements beingdone (eventually) within the critical region, and overweighting far-off measurements (eventually) for well-behaved fitting functions.
Speaking about new trials, each next trial will be done at offered load equal to the current average ofthe critical load. Alternative methods for selecting offered load might be used, in an attempt to speed upconvergence, but such methods tend to be scpecific for a particular system under tests.
Fitting function coefficients distribution

To accomodate systems with different behaviours, the fitting function is expected to have few numericparameters affecting its shape (mainly affecting the linear approximation in the critical region).
The general search algorithm can use whatever increasing fitting function, some specific functions candescribed later.
It is up to implementer to chose a fitting function and prior distribution of its parameters. The rest of thisdocument assumes each parameter is independently and uniformly distributed over a common interval.Implementers are to add non-linear transformations into their fitting functions if their prior is different.
Exit condition for the search is either critical load stdev becoming small enough, or overal search timebecoming long enough.
The algorithm should report both avg and stdev for critical load. If the reported averages follow a trend(without reaching equilibrium), avg and stdev should refer to the equilibrium estimates based on the trend,not to immediate posterior values.

19 https://en.wikipedia.org/wiki/Poisson_distribution20 https://en.wikipedia.org/wiki/Binomial_distribution

24 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Binomial_distribution

CSIT REPORT, Release rls1901_3

Integration

The posterior distributions for fitting function parameters will not be integrable in general.
The search algorithm utilises the fact that trial measurement takes some time, so this time can be usedfor numeric integration (using suitable method, such as Monte Carlo) to achieve sufficient precision.
Optimizations

After enough trials, the posterior distribution will be concentrated in a narrow area of parameter space.The integration method should take advantage of that.
Even in the concentrated area, the likelihood can be quite small, so the integration algorithm should trackthe logarithm of the likelihood, and also avoid underflow errors by other means.
FD.io CSIT Implementation Specifics

The search receives min_rate and max_rate values, to avoid measurements at offered loads not sup-poreted by the traffic generator.
The implemented tests cases use bidirectional traffic. The algorithm stores each rate as bidirectional rate(internally, the algorithm is agnostic to flows and directions, it only cares about overall counts of packetssent and packets lost), but debug output from traffic generator lists unidirectional values.
Measurement delay

In a sample implemenation in FD.io CSIT project, there is roughly 0.5 second delay between trials due torestrictons imposed by packet traffic generator in use (T-Rex).
As measurements results come in, posterior distribution computation takes more time (per sample), al-though there is a considerable constant part (mostly for inverting the fitting functions).
Also, the integrator needs a fair amount of samples to reach the region the posterior distribution is con-centrated at.
And of course, speed of the integrator depends on computing power of the CPU the algorithm is able touse.
All those timing related effects are addressed by arithmetically increasing trial durations with configurablecoefficients (currently 10.2 seconds for the first trial, each subsequent trial being 0.2 second longer).
Rounding errors and underflows

In order to avoid them, the current implementation tracks natural logarithm (instead of the original quan-tity) for any quantity which is never negative. Logarithm of zero is minus infinity (not supported byPython), so special value “None” is used instead. Specific functions for frequent operations (such as“logarithm of sum of exponentials”) are defined to handle None correctly.
Fitting functions

Current implementation uses two fitting functions. In general, their estimates for critical rate differ, whichadds a simple source of systematic error, on top of randomness error reported by integrator. Otherwisethe reported stdev of critical rate estimate is unrealistically low.
Both functions are not only increasing, but convex (meaning the rate of increase is also increasing).

1.5. Test Methodology 25

CSIT REPORT, Release rls1901_3

As primitive function21 to any positive function is an increasing function, and primitive function to any in-creasing function is convex function; both fitting functions were constructed as double primitive functionto a positive function (even though the intermediate increasing function is easier to describe).
As not any function is integrable, some more realistic functions (especially with respect to behavior atvery small offered loads) are not easily available.
Both fitting functions have a “central point” and a “spread”, varied by simply shifting and scaling (in x-axis,the offered load direction) the function to be doubly integrated. Scaling in y-axis (the loss rate direction)is fixed by the requirement of transfer rate staying nearly constant in very high offered loads.
In both fitting functions (as they are a double primitive function to a symmetric function), the “centralpoint” turns out to be equal to the aforementioned limiting transfer rate, so the fitting function parameteris named “mrr”, the same quantity our Maximum Receive Rate tests are designed to measure.
Both fitting functions return logarithm of loss rate, to avoid rounding errors and underflows. Parametersand offered load are not given as logarithms, as they are not expected to be extreme, and the formulasare simpler that way.
Both fitting functions have several mathematically equivalent formulas, each can lead to an overflow orunderflow in different places. Overflows can be eliminated by using different exact formulas for differentargument ranges. Underflows can be avoided by using approximate formulas in affected argument ranges,such ranges have their own formulas to compute. At the end, both fitting function implementationscontain multiple “if” branches, discontinuities are a possibility at range boundaries.
Offered load for next trial measurement is the average of critical rate estimate. During eachmeasurement,two estimates are computed, even though only one (in alternating order) is used for next offered load.
Stretch function

The original function (before applying logarithm) is primitive function to logistic function22. The name“stretch” is used for related function in context of neural networks with sigmoid activation function.
Erf function

The original function is double primitive function to Gaussian function23. The name “erf” comes fromerror function, the first primitive to Gaussian.
Prior distributions

The numeric integrator expects all the parameters to be distributed (independently and) uniformly on aninterval (-1, 1).
As both “mrr” and “spread” parameters are positive and not not dimensionless, a transformation is needed.Dimentionality is inherited from max_rate value.
The “mrr” parameter follows a Lomax distribution24 with alpha equal to one, but shifted so that mrr isalways greater than 1 packet per second.
The “stretch” parameter is generated simply as the “mrr” value raised to a random power between zeroand one; thus it follows a reciprocal distribution25.

21 https://en.wikipedia.org/wiki/Antiderivative22 https://en.wikipedia.org/wiki/Logistic_function23 https://en.wikipedia.org/wiki/Gaussian_function24 https://en.wikipedia.org/wiki/Lomax_distribution25 https://en.wikipedia.org/wiki/Reciprocal_distribution

26 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Antiderivative
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Gaussian_function
https://en.wikipedia.org/wiki/Lomax_distribution
https://en.wikipedia.org/wiki/Reciprocal_distribution

CSIT REPORT, Release rls1901_3

Integrator

After few measurements, the posterior distribution of fitting function arguments gets quite concentratedinto a small area. The integrator is using Monte Carlo26 with importance sampling27 where the biaseddistribution is bivariate Gaussian28 distribution, with deliberately larger variance. If the generated samplefalls outside (-1, 1) interval, another sample is generated.
The center and the variance for the biased distribution has three sources. First is a prior information. Afterenough samples are generated, the biased distribution is constructed from a mixture of two sources. Top12 most weight samples, and all samples (the mix ratio is computed from the relative weights of thetwo populations). When integration (run along a particular measurement) is finished, the mixture biasdistribution is used as the prior information for the next integration.
This combination showed the best behavior, as the integrator usually follows two phases. First phase(where the top 12 samples are dominating) is mainly important for locating the new area the posteriordistribution is concentrated at. The second phase (dominated by whole sample population) is actuallyrelevant for the critical rate estimation.
Caveats

Current implementation does not constrict the critical rate (as computed for every sample) to themin_rate,max_rate interval.
Earlier implementations were targeting loss rate (as opposed to loss ratio). The chosen fitting functionsdo allow arbitrarily low loss ratios, but may suffer from rounding errors in corresponding parameter re-gions. Internal loss rate target is computed from given loss ratio using the current trial offered load, whichincreases search instability, especially if measurements with surprisingly high loss count appear.
As high loss count measurements add many bits of information, they need a large amount of small losscount measurements to balance them, making the algorithm converge quite slowly.
Some systems evidently do not follow the assumption of repeated measurements having the same aver-age loss rate (when offered load is the same). The idea of estimating the trend is not implemented at all,as the observed trends have varied characteristics.
Probably, using a more realistic fitting functions will give better estimates than trend analysis.
Graphical examples

The following pictures show the upper and lower bound (one sigma) on estimated critical rate, as com-puted by PLRsearch, after each trial measurement within the 30 minute duration of a test run.
Both graphs are focusing on later estimates. Estimates computed from few initial measurements arewildlyoff the y-axis range shown.
L2 patch

This test case shows quite narrow critical region. Both fitting functions give similar estimates, the graphshows the randomness of measurements, and a trend. Both fitting functions seem to be somewhat over-estimating the critical rate. The final estimated interval is too narrow, a longer run would report estimatessomewhat bellow the current lower bound.
26 https://en.wikipedia.org/wiki/Monte_Carlo_integration27 https://en.wikipedia.org/wiki/Importance_sampling28 https://en.wikipedia.org/wiki/Multivariate_normal_distribution

1.5. Test Methodology 27

https://en.wikipedia.org/wiki/Monte_Carlo_integration
https://en.wikipedia.org/wiki/Importance_sampling
https://en.wikipedia.org/wiki/Multivariate_normal_distribution

CSIT REPORT, Release rls1901_3

Vhost

This test case shows quite broad critical region. Fitting functions give fairly differing estimates. Oneoverestimates, the other underestimates. The graph mostly shows later measurements slowly bringingthe estimates towards each other. The final estimated interval is too broad, a longer run would return asmaller interval within the current one.

28 Chapter 1. Introduction

CSIT REPORT, Release rls1901_3

1.5. Test Methodology 29

CHAPTER2

VPP Performance

2.1 Overview

VPP performance test results are reported for all three physical testbed types present in FD.io labs: 3-Node Xeon Haswell (3n-hsw), 3-Node Xeon Skylake (3n-skx), 2-Node Xeon Skylake (2n-skx) and installedNIC models. For description of physical testbeds used for VPP performance tests please refer to Physical
Testbeds (page 4).

2.1.1 Logical Topologies

CSIT VPP performance tests are executed on physical testbeds described in Physical Testbeds (page 4).Based on the packet path thru server SUTs, three distinct logical topology types are used for VPP DUTdata plane testing:
1. NIC-to-NIC switching topologies.
2. VM service switching topologies.
3. Container service switching topologies.

NIC-to-NIC Switching

The simplest logical topology for software data plane application like VPP is NIC-to-NIC switching. Testedtopologies for 2-Node and 3-Node testbeds are shown in figures below.

30

CSIT REPORT, Release rls1901_3

System Under Test (SUT)

 DUT

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

2-Node Topology: NIC-to-NIC Switching

Forwarding
Context

System Under Test 1 (SUT1)

 DUT1

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

System Under Test 2 (SUT2)

 DUT2

NIC

Linux
Kernel

Linux-Host
User-Space

3-Node Topology: NIC-to-NIC Switching

Forwarding
Context

Forwarding
Context

Server Systems Under Test (SUT) run VPP application in Linux user-mode as a Device Under Test (DUT).Server Traffic Generator (TG) runs T-Rex application. Physical connectivity between SUTs and TG is pro-vided using different drivers and NIC models that need to be tested for performance (packet/bandwidththroughput and latency).
From SUT andDUT perspectives, all performance tests involve forwarding packets between two (ormore)physical Ethernet ports (10GE, 25GE, 40GE, 100GE). In most cases both physical ports on SUT are locatedon the same NIC. The only exceptions are link bonding and 100GE tests. In the latter case only one portper NIC can be driven at linerate due to PCIe Gen3 x16 slot bandwidth limiations. 100GE NICs are notsupported in PCIe Gen3 x8 slots.

2.1. Overview 31

CSIT REPORT, Release rls1901_3

Note that reported VPP DUT performance results are specific to the SUTs tested. SUTs with other pro-cessors than the ones used in FD.io lab are likely to yield different results. A good rule of thumb, thatcan be applied to estimate VPP packet thoughput for NIC-to-NIC switching topology, is to expect theforwarding performance to be proportional to processor core frequency for the same processor architec-ture, assuming processor is the only limiting factor and all other SUT parameters are equivalent to FD.ioCSIT environment.
VM Service Switching

VM service switching topology test cases require VPP DUT to communicate with Virtual Machines (VMs)over vhost-user virtual interfaces.
Two types of VM service topologies are tested in CSIT-1901.3:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to VM, back to VPPDUT, then out thru NIC(s).
2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT toVM, back to VPP DUT, then to the next VM, back to VPP DUT and so on and so forth until the lastVM in a chain, then back to VPP DUT and out thru NIC(s).

For each of the above topologies, VPP DUT is tested in a range of L2 or IPv4/IPv6 configurations de-pending on the test suite. Sample VPP DUT “Chained” VM service topologies for 2-Node and 3-Nodetestbeds with each SUT running N of VM instances is shown in the figures below.

2-Node Topology: VM Service Switching

System Under Test (SUT)

VM[n]VM[1] VM[2]

DUT

Traffic Generator

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

32 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

3-Node Topology: VM Service Switching

System Under Test 1 (SUT1)

VM[n]VM[1] VM[2]

DUT1

Traffic Generator (TG)

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

System Under Test 2 (SUT2)

VM[n]VM[1] VM[2]

DUT2

Linux
Kernel

Linux-Host
User-Space

VNF[1]
…

VNF[2] VNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

In “Chained” VM topologies, packets are switched by VPP DUT multiple times: twice for a single VM,three times for two VMs, N+1 times for N VMs. Hence the external throughput rates measured by TGand listed in this report must be multiplied by N+1 to represent the actual VPP DUT aggregate packetforwarding rate.
For “Parallel” service topology packets are always switched twice by VPP DUT per service chain.
Note that reported VPPDUT performance results are specific to the SUTs tested. SUTswith other proces-sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switchingtopology, here one can also expect the forwarding performance to be proportional to processor corefrequency for the same processor architecture, assuming processor is the only limiting factor. Howeverdue to much higher dependency on intensive memory operations in VM service chained topologies andsensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enoughaccuracy.
Container Service Switching

Container service switching topology test cases require VPP DUT to communicate with Containers (Ctrs)over memif virtual interfaces.
Three types of VM service topologies are tested in CSIT-1901.3:

1. “Parallel” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, back toVPP DUT, then out thru NIC(s).
2. “Chained” topology (a.k.a. “Snake”) with packets flowing within SUT from NIC(s) via VPP DUT toContainer, back to VPP DUT, then to the next Container, back to VPP DUT and so on and so forthuntil the last Container in a chain, then back to VPP DUT and out thru NIC(s).
3. “Horizontal” topology with packets flowing within SUT from NIC(s) via VPP DUT to Container, thenvia “horizontal” memif to the next Container, and so on and so forth until the last Container, thenback to VPP DUT and out thru NIC(s).

For each of the above topologies, VPPDUT is tested in a range of L2 or IPv4/IPv6 configurations depend-ing on the test suite. Sample VPP DUT “Chained” Container service topologies for 2-Node and 3-Nodetestbeds with each SUT running N of Container instances is shown in the figures below.

2.1. Overview 33

CSIT REPORT, Release rls1901_3

2-Node Topology: Container Service Switching

System Under Test (SUT)

Ctr[n]Ctr[1] Ctr[2]

DUT

Traffic Generator

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

3-Node Topology: Container Service Switching

System Under Test 1 (SUT1)

Ctr[n]Ctr[1] Ctr[2]

DUT1

Traffic Generator (TG)

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

System Under Test 2 (SUT2)

Ctr[n]Ctr[1] Ctr[2]

DUT2

Linux
Kernel

Linux-Host
User-Space

CNF[1]
…

CNF[2] CNF[n]

NIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

In “Chained” Container topologies, packets are switched by VPP DUT multiple times: twice for a singleContainer, three times for two Containers, N+1 times for N Containers. Hence the external throughputrates measured by TG and listed in this report must be multiplied by N+1 to represent the actual VPPDUT aggregate packet forwarding rate.
For a “Parallel” and “Horizontal” service topologies packets are always switched by VPP DUT twice perservice chain.
Note that reported VPPDUT performance results are specific to the SUTs tested. SUTswith other proces-sor than the ones used in FD.io lab are likely to yield different results. Similarly to NIC-to-NIC switchingtopology, here one can also expect the forwarding performance to be proportional to processor core fre-quency for the same processor architecture, assuming processor is the only limiting factor. However due
34 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

to much higher dependency on intensive memory operations in Container service chained topologies andsensitivity to Linux scheduler settings and behaviour, this estimation may not always yield good enoughaccuracy.

2.1.2 Performance Tests Coverage

Performance tests measure following metrics for tested VPP DUT topologies and configurations:
• Packet Throughput: measured in accordance with RFC 254429, using FD.io CSITMultiple Loss Ratiosearch (MLRsearch), an optimized binary search algorithm, producing throughput at different PacketLoss Ratio (PLR) values:

– Non Drop Rate (NDR): packet throughput at PLR=0%.
– Partial Drop Rate (PDR): packet throughput at PLR=0.5%.

• One-Way Packet Latency: measured at different offered packet loads:
– 100% of discovered NDR throughput.
– 100% of discovered PDR throughput.

• Maximum Receive Rate (MRR): measure packet forwarding rate under the maximum load offeredby traffic generator over a set trial duration, regardless of packet loss. Maximum load for specifiedEthernet frame size is set to the bi-directional link rate.
CSIT-1901.3 includes following VPP data plane functionality performance tested across a range of NICdrivers and NIC models:

29 https://tools.ietf.org/html/rfc2544.html

2.1. Overview 35

https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls1901_3

Functionality DescriptionACL L2 Bridge-Domain switching and IPv4and IPv6 routing with iACL and oACL IP ad-dress, MAC address and L4 port security.COP IPv4 and IPv6 routing with COP address security.IPv4 IPv4 routing.IPv6 IPv6 routing.IPv4 Scale IPv4 routing with 20k, 200k and 2M FIB entries.IPv6 Scale IPv6 routing with 20k, 200k and 2M FIB entries.IPSecHW IPSec encryption with AES-GCM, CBC-SHA1 ciphers, in combination with IPv4 rout-ing. Intel QAT HW acceleration.IPSec+LISP IPSec encryptionwith CBC-SHA1 ciphers, in combinationwith LISP-GPE overlay tun-neling for IPv4-over-IPv4.IPSecSW IPSec encryption with AES-GCM, CBC-SHA1 ciphers, in combination with IPv4 rout-ing.K8s Contain-ers Memif K8s orchestrated container VPP service chain topologies connected over the memifvirtual interface.KVM VMsvhost-user Virtual topologies with service chains of 1 and 2 VMs using vhost-user interfaces,with different VPP forwarding modes incl. L2XC, L2BD, VXLAN with L2BD, IPv4routing.L2BD L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-abled MAC learning i.e. static MAC tests to be added.L2BD Scale L2 Bridge-Domain switching of untagged Ethernet frames with MAC learning; dis-abled MAC learning i.e. static MAC tests to be added with 20k, 200k and 2M FIBentries.L2XC L2 Cross-Connect switching of untagged, dot1q, dot1ad VLAN tagged Ethernetframes.LISP LISP overlay tunneling for IPv4-over-IPv4, IPv6-over-IPv4, IPv6-over-IPv6, IPv4-over-IPv6 in IPv4 and IPv6 routing modes.LXC/DRCContainersMemif
Container VPP memif virtual interface tests with different VPP forwarding modesincl. L2XC, L2BD.

NAT (Source) Network Address Translation tests with varying number of users and portsper user.QoS Policer Ingress packet rate measuring, marking and limiting (IPv4).SRv6 Routing Segment Routing IPv6 tests.VPP TCP/IPstack Tests of VPP TCP/IP stack used with VPP built-in HTTP server.
VTS Virtual Topology System use case tests combining VXLAN overlay tunneling withL2BD, ACL and KVM VM vhost-user features.VXLAN VXLAN overlay tunnelling integration with L2XC and L2BD.

Execution of performance tests takes time, especially the throughput tests. Due to limited HW testbedresources available within FD.io labs hosted by LF, the number of tests for some NIC models has beenlimited to few baseline tests.
2.1.3 Performance Tests Naming

FD.io CSIT-1901.3 follows a common structured naming convention for all performance and system func-tional tests, introduced in CSIT-17.01.
The naming should be intuitive for majority of the tests. Complete description of FD.io CSIT test namingconvention is provided on Test Naming (page 239).

2.2 Release Notes

36 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

Note: CSIT-1901.3 report was generated with a single run of selected 64B frame performance tests on3n-hsw test beds in order to spot-check the main data plane paths. NFV service density and soak testswere not run and do not feature in this report.

2.2.1 Known Issues

List of known issues in CSIT-1901.3 for VPP performance tests:
Ji-raID Issue Description
1 CSIT-57030 Sporadic (1 in 200) NDR discovery test failures on x520. DPDK reporting rx-errors, indi-cating L1 issue. Suspected issue with HW combination of X710-X520 in LF testbeds. Notobserved outside of LF testbeds.2 VPP-156331 AVF L2patch tests are failing for all packet size and core combination. Reason: null-nodeblackholed packets in show error.3 CSIT-146532 4c VPP VM vhost tests failiing on 3n-skx

30 https://jira.fd.io/browse/CSIT-57031 https://jira.fd.io/browse/VPP-156332 https://jira.fd.io/browse/CSIT-1465

2.2. Release Notes 37

https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/CSIT-570
https://jira.fd.io/browse/VPP-1563
https://jira.fd.io/browse/VPP-1563
https://jira.fd.io/browse/CSIT-1465
https://jira.fd.io/browse/CSIT-1465

CSIT REPORT, Release rls1901_3

2.3 Packet Throughput

Throughput graphs are generated by multiple executions of the same performance tests across physi-cal testbeds hosted LF FD.io labs: 3n-hsw, 2n-skx, 2n-skx. Box-and-Whisker plots are used to displayvariations in measured throughput values, without making any assumptions of the underlying statisticaldistribution.
For each test case, Box-and-Whisker plots show the quartiles (Min, 1st quartile / 25th percentile, 2ndquartile / 50th percentile / mean, 3rd quartile / 75th percentile, Max) across collected data set. Outliersare plotted as individual points.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize, number of cores and threads used by data plane workers and indication of VPP DUT configu-ration.
2. X-axis Labels: indices of individual test suites as listed in Graph Legend.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.
4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphedtest results.
5. Hover Information: lists minimum, first quartile, median, third quartile, and maximum. If eithertype of outlier is present the whisker on the appropriate side is taken to 1.5×IQR from the quartile(the “inner fence”) rather than the max or min, and individual outlying data points are displayed asunfilled circles (for suspected outliers) or filled circles (for outliers). (The “outer fence” is 3×IQR fromthe quartile.)

Note: Test results have been generated by FD.io test executor vpp performance job 3n-hsw33, FD.io testexecutor vpp performance job 3n-skx34 and FD.io test executor vpp performance job 2n-skx35 with RFresult files csit-vpp-perf-1901_3-*.zip archived here. Required per test case data set size is 10, but forVPP tests the actual size varies per test case and is <=10.

33 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw34 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx35 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

38 Chapter 2. VPP Performance

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

CSIT REPORT, Release rls1901_3

2.3.1 IPSec IPv4 Routing

Following sections include summary graphs of VPP Phy-to-Phy performance with IPSec encryption usedin combination with IPv4 routed-forwarding, including NDR throughput (zero packet loss) and PDRthroughput (<0.5% packet loss). VPP IPSec encryption is accelerated using DPDK cryptodev library driv-ing Intel Quick Assist (QAT) crypto PCIe hardware cards. Performance is reported for VPP running inmultiple configurations of VPP worker thread(s), a.k.a. VPP data plane thread(s), and their physical CPUcore(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository36.

36 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

2.3. Packet Throughput 39

https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

1 2 3 4
0.00

500m

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1.	(01	run)	ethip4ipsecbasetnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

40 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

500m

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1.	(01	run)	ethip4ipsecbasetnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 41

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(01	run)	ethip4ipsecbasetnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

42 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1.	(01	run)	ethip4ipsecbasetnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 43

CSIT REPORT, Release rls1901_3

64b-1t1c-scale

1 2 3 4
0.00

500m

1.00

1.50

2.00

1.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-scale-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

44 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

500m

1.00

1.50

2.00

1.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-scale-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 45

CSIT REPORT, Release rls1901_3

64b-2t2c-scale

1 2 3 4
0.00

500m

1.00

1.50

2.00

1.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-scale-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

46 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

500m

1.00

1.50

2.00

1.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-scale-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 47

CSIT REPORT, Release rls1901_3

64b-1t1c-sw

1 2 3 4
0.00

500m

1.00

1.50

2.00

2.50

3.00

1.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-sw-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

48 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

500m

1.00

1.50

2.00

2.50

3.00

1.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-1t1c-sw-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 49

CSIT REPORT, Release rls1901_3

64b-2t2c-sw

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

1.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-sw-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

50 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.00

1.00

2.00

3.00

4.00

5.00

6.00

1.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-aes-gcm
2.	(01	run)	ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
3.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
4.	(01	run)	ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1

Throughput:	ipsec-3n-hsw-xl710-64b-2t2c-sw-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

2.3. Packet Throughput 51

CSIT REPORT, Release rls1901_3

2.4 Speedup Multi-Core

Speedup Multi-Core throughput graphs are generated by multiple executions of the same performancetests across physical testbeds hosted LF FD.io labs: 3n-hsw, 2n-skx, 2n-skx. Grouped bars illustrate the64B/78B packet throughput speedup ratio for 2- and 4-core multi- threaded VPP configurations relativeto 1-core configurations.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize used by data plane workers and indication of VPP DUT configuration.
2. X-axis Labels: number of cores.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.
4. Graph Legend: lists CSIT test suites executed to generate graphed test results.
5. Hover Information: lists number of runs executed, specific test substring, mean value of the mea-sured packet throughput, calculated perfect throughput value, difference between measured andperfect values and relative speedup value.

Note: Test results have been generated by FD.io test executor vpp performance job 3n-hsw37, FD.io testexecutor vpp performance job 3n-skx38 and FD.io test executor vpp performance job 2n-skx39 with RFresult files csit-vpp-perf-1901_3-*.zip archived here. Required per test case data set size is 10, but forVPP tests the actual size varies per test case and is <=10.

37 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw38 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx39 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

52 Chapter 2. VPP Performance

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

CSIT REPORT, Release rls1901_3

2.4.1 IPSec IPv4 Routing

Following sections include Throughput Speedup Analysis for VPP multi- core multi-thread configurationswith noHyper-Threading, specifically for tested 2t2c (2threads, 2cores) and 4t4c scenarios. 1t1c through-put results are used as a reference for reported speedup ratio. VPP IPSec encryption is accelerated usingDPDK cryptodev library driving Intel Quick Assist (QAT) crypto PCIe hardware cards. Performance is re-ported for VPP running in multiple configurations of VPPworker thread(s), a.k.a. VPP data plane thread(s),and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository40.

40 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

2.4. Speedup Multi-Core 53

https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-hw-base

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecbasetnl-ip4base-int-cbc-sha1
ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnl-ip4base-int-aes-gcm

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-base-ndr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

54 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecbasetnl-ip4base-int-cbc-sha1
ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnl-ip4base-int-aes-gcm

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-base-pdr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

2.4. Speedup Multi-Core 55

CSIT REPORT, Release rls1901_3

64b-hw-scale

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1
ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-scale-ndr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

56 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1
ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-scale-pdr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

2.4. Speedup Multi-Core 57

CSIT REPORT, Release rls1901_3

64b-sw-base

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-aes-gcm

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-sw-ndr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

58 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

1 2 3 4
0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-aes-gcm

Speedup	Multi-core:	ipsec-3n-hsw-xl710-64b-sw-pdr

Number	of	Cores	[Qty]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

_	_										__										...
				Perfect					Measured					Limit

NIC:	35.80Mpps

2.4. Speedup Multi-Core 59

CSIT REPORT, Release rls1901_3

2.5 Packet Latency

Latency results are generated from a single execution of NDR discovery test across physical testbedshosted LF FD.io labs: 3n-hsw, 2n-skx, 2n- skx. Box plots are used to show the Minimum, Median andMaximum packet latency per test.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize, number of cores and threads used by data plane workers and indication of DUT configuration.
2. X-axis Labels: indices of individual test suites as listed in Graph Legend and direction of latencyflow:

• West-to-East: TGint1-to-SUT1-to-SUT2-to-TGint2.
• East-to-West: TGint2-to-SUT2-to-SUT1-to-TGint1.

3. Y-axis Labels: measured packet latency values in [uSec].
4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphedtest results.
5. Hover Information: lists number of runs executed, specific test substring, packet flow direction,maximal, mean and minimal values of measured latencies.

Note: Test results have been generated by FD.io test executor vpp performance job 3n-hsw41, FD.io testexecutor vpp performance job 3n-skx42 and FD.io test executor vpp performance job 2n-skx43 with RFresult files csit-vpp-perf-1901_3-*.zip archived here.

41 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw42 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx43 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

60 Chapter 2. VPP Performance

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

CSIT REPORT, Release rls1901_3

2.5.1 IPSec IPv4 Routing

This section includes summary graphs of VPP Phy-to-Phy packet latency with IPSec encryption used incombinationwith IPv4 routed-forwarding, with latencymeasured at 100%of discoveredNDR throughputrate. VPP IPSec encryption is accelerated using DPDK cryptodev library driving Intel Quick Assist (QAT)crypto PCIe hardware cards. Latency is reported for VPP running inmultiple configurations of VPPworkerthread(s), a.k.a. VPP data plane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository44.

44 https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

2.5. Packet Latency 61

https://git.fd.io/csit/tree/tests/vpp/perf/crypto?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

0.000

200.0

400.0

600.0

800.0

1.000k

ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnl-ip4base-int-cbc-sha1
ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
ethip4ipsecbasetnl-ip4base-int-aes-gcm

Latency:	ipsec-3n-hsw-xl710-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

62 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

50.00

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

ethip4ipsecbasetnl-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnl-ip4base-int-cbc-sha1
ethip4ipsecbasetnl-ip4base-tnl-aes-gcm
ethip4ipsecbasetnl-ip4base-int-aes-gcm

Latency:	ipsec-3n-hsw-xl710-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

2.5. Packet Latency 63

CSIT REPORT, Release rls1901_3

64b-1t1c-scale

0.000

1.000k

2.000k

3.000k

4.000k

5.000k

6.000k

7.000k

ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Latency:	ipsec-3n-hsw-xl710-64b-1t1c-scale-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

64 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-scale

0.000

500.0

1.000k

1.500k

2.000k

2.500k

3.000k

3.500k

ethip4ipsecscale1000tnl-ip4base-tnl-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-aes-gcm
ethip4ipsecscale1000tnl-ip4base-int-cbc-sha1
ethip4ipsecscale1000tnl-ip4base-tnl-cbc-sha1

Latency:	ipsec-3n-hsw-xl710-64b-2t2c-scale-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

2.5. Packet Latency 65

CSIT REPORT, Release rls1901_3

64b-1t1c-sw

0.000

200.0

400.0

600.0

800.0

1.000k

1.200k

ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-aes-gcm

Latency:	ipsec-3n-hsw-xl710-64b-1t1c-sw-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

66 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-sw

0.000

100.0

200.0

300.0

400.0

500.0

600.0

ethip4ipsecbasetnlsw-ip4base-tnl-aes-gcm
ethip4ipsecbasetnlsw-ip4base-tnl-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-cbc-sha1
ethip4ipsecbasetnlsw-ip4base-int-aes-gcm

Latency:	ipsec-3n-hsw-xl710-64b-2t2c-sw-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W W-E E-W W-E E-W W-E E-W

2.5. Packet Latency 67

CSIT REPORT, Release rls1901_3

2.6 Comparisons

2.6.1 Current vs. Previous Release

Relative comparison of VPP packet throughput (NDR, PDR and MRR) between VPP-19.01.3 release andVPP-1810 release (measured for CSIT-1901.3 and CSIT-1810 respectively) is calculated from results oftests running on 3-Node Intel Xeon Haswell testbeds (3n-hsw) in 1-core, 2-core and 4-core (MRR only)configurations.
Listed mean and standard deviation values are computed based on a series of the same tests executedagainst respective VPP releases to verify test results repeatability, with percentage change calculated formean values. Note that the standard deviation is quite high for a small number of packet throughput tests,what indicates poor test results repeatability and makes the relative change of mean throughput valuenot fully representative for these tests. The root causes behind poor results repeatability vary betweenthe test cases.
Note: Test results have been generated by

• FD.io test executor vpp performance job 3n-hsw45,
• FD.io test executor vpp performance job 3n-skx46,
• FD.io test executor vpp performance job 2n-skx47

with RF result files csit-vpp-perf-1901_3-*.zip archived here.

3n-hsw

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 1t1c NDR comparison
• ASCII 2t2c NDR comparison
• CSV 1t1c NDR comparison
• CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 1t1c PDR comparison
• ASCII 2t2c PDR comparison
• CSV 1t1c PDR comparison
• CSV 2t2c PDR comparison

45 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw46 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx47 https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx

68 Chapter 2. VPP Performance

https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-vpp-perf-verify-1901_3-2n-skx
../../_static/vpp/performance-changes-3n-hsw-1t1c-ndr.txt
../../_static/vpp/performance-changes-3n-hsw-2t2c-ndr.txt
../../_static/vpp/performance-changes-3n-hsw-1t1c-ndr.csv
../../_static/vpp/performance-changes-3n-hsw-2t2c-ndr.csv
../../_static/vpp/performance-changes-3n-hsw-1t1c-pdr.txt
../../_static/vpp/performance-changes-3n-hsw-2t2c-pdr.txt
../../_static/vpp/performance-changes-3n-hsw-1t1c-pdr.csv
../../_static/vpp/performance-changes-3n-hsw-2t2c-pdr.csv

CSIT REPORT, Release rls1901_3

2.7 Throughput Trending

In addition to reporting throughput comparison between VPP releases, CSIT provides continuous perfor-mance trending for VPP master branch:
1. Performance Dashboard48: per VPP test case throughput trend, trend compliance and summary ofdetected anomalies.
2. Trending Methodology49: throughput test metrics, trend calculations and anomaly classification(progression, regression).
3. VPP Trendline Graphs50: per VPP build MRR throughput measurements against the trendline withanomaly highlights and associated CSIT test jobs.

48 https://docs.fd.io/csit/master/trending/introduction/index.html49 https://docs.fd.io/csit/master/trending/methodology/index.html50 https://docs.fd.io/csit/master/trending/trending/index.html

2.7. Throughput Trending 69

https://docs.fd.io/csit/master/trending/introduction/index.html
https://docs.fd.io/csit/master/trending/methodology/index.html
https://docs.fd.io/csit/master/trending/trending/index.html

CSIT REPORT, Release rls1901_3

2.8 Test Environment

2.8.1 Physical Testbeds

FD.io CSIT performance tests are executed in physical testbeds hosted by LF for FD.io project. Twophysical testbed topology types are used:
• 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server asTG (Traffic Generator), all connected in ring topology.
• 2-Node Topology: Consisting of one server acting as SUTs and one server as TG both connected inring topology.

Tested SUT servers are based on a range of processors including Intel Xeon Haswell-SP, Intel XeonSkylake-SP, Arm, Intel Atom. More detailed description is provided in Physical Testbeds (page 4). Testedlogical topologies are described in Logical Topologies (page 30).

2.8.2 Server Specifications

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained inFD.io CSIT repository: FD.io CSIT testbeds - Xeon Skylake, Arm, Atom51 and FD.io CSIT Testbeds - XeonHaswell52.

2.8.3 Pre-Test Server Calibration

Number of SUT server sub-system runtime parameters have been identified as impacting data planeperformance tests. Calibrating those parameters is part of FD.io CSIT pre-test activities, and includesmeasuring and reporting following:
1. System level core jitter – measure duration of core interrupts by Linux in clock cycles and how ofteninterrupts happen. Using CPU core jitter tool53.
2. Memory bandwidth – measure bandwidth with Intel MLC tool54.
3. Memory latency – measure memory latency with Intel MLC tool.
4. Cache latency at all levels (L1, L2, and Last Level Cache) – measure cache latency with Intel MLCtool.

Measured values of listed parameters are especially important for repeatable zero packet loss throughputmeasurements across multiple system instances. Generally they come useful as a background data forcomparing data plane performance results across disparate servers.
Following sections include measured calibration data for Intel Xeon Haswell and Intel Xeon Skylaketestbeds.

2.8.4 Calibration Data - Haswell

Following sections include sample calibration data measured on t1-sut1 server running in one of the IntelXeon Haswell testbeds as specified in FD.io CSIT Testbeds - Xeon Haswell55.
Calibration data obtained from all other servers in Haswell testbeds shows the same or similar values.

51 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_352 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_353 https://git.fd.io/pma_tools/tree/jitter54 https://software.intel.com/en-us/articles/intelr-memory-latency-checker55 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

70 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3
https://git.fd.io/pma_tools/tree/jitter
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-36-generic root=UUID=5d2ecc97-245b-4e94-b0ae-c3548567de19 ro isolcpus=1-
→˓17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable␣
→˓intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
→˓cstate=1 hpet=disable tsc=reliable mce=off console=tty0 console=ttyS0,115200n8

Linux uname

$ uname -a
Linux t1-tg1 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64 x86_64 x86_64 GNU/
→˓Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30
Linux Jitter testing program version 1.8
Iterations=30
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160024 172636 12612 160028 160024 172636 1573060608 3205463144 ␣
→˓1

160024 188236 28212 160028 160024 188236 958595072 3205500844 ␣
→˓2

160024 185676 25652 160028 160024 188236 344129536 3205485976 ␣
→˓3

160024 172608 12584 160024 160024 188236 4024631296 3205472740 ␣
→˓4

160024 179260 19236 160028 160024 188236 3410165760 3205502164 ␣
→˓5

160024 172432 12408 160024 160024 188236 2795700224 3205452036 ␣
→˓6

160024 178820 18796 160024 160024 188236 2181234688 3205455408 ␣
→˓7

160024 172512 12488 160028 160024 188236 1566769152 3205461528 ␣
→˓8

160024 172636 12612 160028 160024 188236 952303616 3205478820 ␣
→˓9

160024 173676 13652 160028 160024 188236 337838080 3205470412 ␣
→˓10

160024 178776 18752 160028 160024 188236 4018339840 3205481472 ␣
→˓11

160024 172788 12764 160028 160024 188236 3403874304 3205492336 ␣
→˓12 (continues on next page)

2.8. Test Environment 71

CSIT REPORT, Release rls1901_3

(continued from previous page)
160024 174616 14592 160028 160024 188236 2789408768 3205474904 ␣

→˓13
160024 174440 14416 160028 160024 188236 2174943232 3205479448 ␣

→˓14
160024 178748 18724 160024 160024 188236 1560477696 3205482668 ␣

→˓15
160024 172588 12564 169404 160024 188236 946012160 3205510496 ␣

→˓16
160024 172636 12612 160024 160024 188236 331546624 3205472204 ␣

→˓17
160024 172480 12456 160024 160024 188236 4012048384 3205455864 ␣

→˓18
160024 172740 12716 160028 160024 188236 3397582848 3205464932 ␣

→˓19
160024 179200 19176 160028 160024 188236 2783117312 3205476012 ␣

→˓20
160024 172480 12456 160028 160024 188236 2168651776 3205465632 ␣

→˓21
160024 172728 12704 160024 160024 188236 1554186240 3205497204 ␣

→˓22
160024 172620 12596 160028 160024 188236 939720704 3205466972 ␣

→˓23
160024 172640 12616 160028 160024 188236 325255168 3205471216 ␣

→˓24
160024 172484 12460 160028 160024 188236 4005756928 3205467388 ␣

→˓25
160024 172636 12612 160028 160024 188236 3391291392 3205482748 ␣

→˓26
160024 179056 19032 160024 160024 188236 2776825856 3205467152 ␣

→˓27
160024 172672 12648 160024 160024 188236 2162360320 3205483268 ␣

→˓28
160024 176932 16908 160024 160024 188236 1547894784 3205488536 ␣

→˓29
160024 172452 12428 160028 160024 188236 933429248 3205440636 ␣

→˓30

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 57935.5 30265.2
1 30284.6 58409.9

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

(continues on next page)

72 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115762.2
3:1 Reads-Writes : 106242.2
2:1 Reads-Writes : 103031.8
1:1 Reads-Writes : 87943.7
Stream-triad like: 100048.4

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115782.41
3:1 Reads-Writes : 105965.78
2:1 Reads-Writes : 103162.38
1:1 Reads-Writes : 88255.82
Stream-triad like: 105608.10

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 101.0 132.0
1 141.2 98.8

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 227.2 core clocks (99.0 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth

(continues on next page)

2.8. Test Environment 73

CSIT REPORT, Release rls1901_3

(continued from previous page)
Delay (ns) MB/sec
==========================
00000 294.08 115841.6
00002 294.27 115851.5
00008 293.67 115821.8
00015 278.92 115587.5
00050 246.80 113991.2
00100 206.86 104508.1
00200 123.72 72873.6
00300 113.35 52641.1
00400 108.89 41078.9
00500 108.11 33699.1
00700 106.19 24878.0
01000 104.75 17948.1
01300 103.72 14089.0
01700 102.95 11013.6
02500 102.25 7756.3
03500 101.81 5749.3
05000 101.46 4230.4
09000 101.05 2641.4
20000 100.77 1542.5

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 42.1
Local Socket L2->L2 HITM latency 47.0
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 108.0
1 106.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 107.7
1 106.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github56.
• CVE-2017-5753 [bounds check bypass] aka ‘Spectre Variant 1’
• CVE-2017-5715 [branch target injection] aka ‘Spectre Variant 2’
• CVE-2017-5754 [rogue data cache load] aka ‘Meltdown’ aka ‘Variant 3’
• CVE-2018-3640 [rogue system register read] aka ‘Variant 3a’
• CVE-2018-3639 [speculative store bypass] aka ‘Variant 4’
• CVE-2018-3615 [L1 terminal fault] aka ‘Foreshadow (SGX)’

56 https://github.com/speed47/spectre-meltdown-checker

74 Chapter 2. VPP Performance

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls1901_3

• CVE-2018-3620 [L1 terminal fault] aka ‘Foreshadow-NG (OS)’
• CVE-2018-3646 [L1 terminal fault] aka ‘Foreshadow-NG (VMM)’

$ sudo ./spectre-meltdown-checker.sh --no-color

Spectre and Meltdown mitigation detection tool v0.40

Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64
CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2␣

→˓ucode 0x3d cpuid 0x306f2)
* CPU microcode is the latest known available version: YES (latest version is 0x3d dated 2018/04/

→˓20 according to builtin MCExtractor DB v84 - 2018/09/27)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass'
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka 'Spectre Variant 2, branch target injection'
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for kernel and firmware code)

(continues on next page)

2.8. Test Environment 75

CSIT REPORT, Release rls1901_3

(continued from previous page)
* Kernel is compiled with IBPB support: YES

* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load'
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka 'Variant 3a, rogue system register read'
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka 'Variant 4, speculative store bypass'
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports speculation store bypass: YES (found in /proc/self/status)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault'
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault'
* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: YES
> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion)

CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault'
* Information from the /sys interface: VMX: conditional cache flushes, SMT disabled
* This system is a host running an hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣

→˓reduced)
* Hyper-Threading (SMT) is enabled: NO

> STATUS: NOT VULNERABLE (this system is not running an hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK

Need more detailed information about mitigation options? Use --explain
A false sense of security is worse than no security at all, see --disclaimer

76 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

2.8.5 Calibration Data - Skylake

Following sections include sample calibration data measured on s11-t31-sut1 server running in one ofthe Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Skylake, Arm, Atom57.
Calibration data obtained from all other servers in Skylake testbeds shows the same or similar values.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-23-generic root=UUID=759ad671-ad46-441b-a75b-9f54e81837bb ro isolcpus=1-
→˓27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83,85-111 numa_
→˓balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

Linux uname

$ uname -a
Linux s5-t22-sut1 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64 x86_64 x86_
→˓64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20
Linux Jitter testing program version 1.8
Iterations=20
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160022 171330 11308 160022 160022 171330 2538733568 3204142750 ␣
→˓1

160022 167294 7272 160026 160022 171330 328335360 3203873548 ␣
→˓2

160022 167560 7538 160026 160022 171330 2412904448 3203878736 ␣
→˓3

160022 169000 8978 160024 160022 171330 202506240 3203864588 ␣
→˓4

160022 166572 6550 160026 160022 171330 2287075328 3203866224 ␣
→˓5

160022 167460 7438 160026 160022 171330 76677120 3203854632 ␣
→˓6

160022 168134 8112 160024 160022 171330 2161246208 3203874674 ␣
→˓7 (continues on next page)
57 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3

2.8. Test Environment 77

https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
160022 169094 9072 160022 160022 171330 4245815296 3203878798 ␣

→˓8
160022 172460 12438 160024 160022 172460 2035417088 3204112010 ␣

→˓9
160022 167862 7840 160030 160022 172460 4119986176 3203856800 ␣

→˓10
160022 168398 8376 160024 160022 172460 1909587968 3203854192 ␣

→˓11
160022 167548 7526 160024 160022 172460 3994157056 3203847442 ␣

→˓12
160022 167562 7540 160026 160022 172460 1783758848 3203862936 ␣

→˓13
160022 167604 7582 160024 160022 172460 3868327936 3203859346 ␣

→˓14
160022 168262 8240 160024 160022 172460 1657929728 3203851120 ␣

→˓15
160022 169700 9678 160024 160022 172460 3742498816 3203877690 ␣

→˓16
160022 170476 10454 160026 160022 172460 1532100608 3204088480 ␣

→˓17
160022 167798 7776 160024 160022 172460 3616669696 3203862072 ␣

→˓18
160022 166540 6518 160024 160022 172460 1406271488 3203836904 ␣

→˓19
160022 167516 7494 160024 160022 172460 3490840576 3203848120 ␣

→˓20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 107947.7 50951.5
1 50834.6 108183.4

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 215733.9
3:1 Reads-Writes : 182141.9
2:1 Reads-Writes : 178615.7
1:1 Reads-Writes : 149911.3
Stream-triad like: 159533.6

78 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 216875.73
3:1 Reads-Writes : 182615.14
2:1 Reads-Writes : 178745.67
1:1 Reads-Writes : 149485.27
Stream-triad like: 180057.87

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 81.4 131.1
1 131.1 81.3

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 2000.000MB
Each iteration took 202.0 core clocks (80.8 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 282.66 215712.8
00002 282.14 215757.4
00008 280.21 215868.1
00015 279.20 216313.2
00050 275.25 216643.0
00100 227.05 215075.0
00200 121.92 160242.9
00300 101.21 111587.4
00400 95.48 85019.7

(continues on next page)

2.8. Test Environment 79

CSIT REPORT, Release rls1901_3

(continued from previous page)
00500 94.46 68717.3
00700 92.27 49742.2
01000 91.03 35264.8
01300 90.11 27396.3
01700 89.34 21178.7
02500 90.15 14672.8
03500 89.00 10715.7
05000 82.00 7788.2
09000 81.46 4684.0
20000 81.40 2541.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 53.7
Local Socket L2->L2 HITM latency 53.7
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 113.9
1 113.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 177.9
1 177.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github58.
• CVE-2017-5753 [bounds check bypass] aka ‘Spectre Variant 1’
• CVE-2017-5715 [branch target injection] aka ‘Spectre Variant 2’
• CVE-2017-5754 [rogue data cache load] aka ‘Meltdown’ aka ‘Variant 3’
• CVE-2018-3640 [rogue system register read] aka ‘Variant 3a’
• CVE-2018-3639 [speculative store bypass] aka ‘Variant 4’
• CVE-2018-3615 [L1 terminal fault] aka ‘Foreshadow (SGX)’
• CVE-2018-3620 [L1 terminal fault] aka ‘Foreshadow-NG (OS)’
• CVE-2018-3646 [L1 terminal fault] aka ‘Foreshadow-NG (VMM)’

$ sudo ./spectre-meltdown-checker.sh --no-color

Spectre and Meltdown mitigation detection tool v0.40

Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64

(continues on next page)
58 https://github.com/speed47/spectre-meltdown-checker

80 Chapter 2. VPP Performance

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls1901_3

(continued from previous page)
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: NO

* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4␣

→˓ucode 0x2000043 cpuid 0x50654)
* CPU microcode is the latest known available version: NO (latest version is 0x200004d dated 2018/

→˓05/15 according to builtin MCExtractor DB v84 - 2018/09/27)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass'
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka 'Spectre Variant 2, branch target injection'
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for kernel and firmware code)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
* Kernel supports RSB filling: YES

(continues on next page)

2.8. Test Environment 81

CSIT REPORT, Release rls1901_3

(continued from previous page)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load'
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka 'Variant 3a, rogue system register read'
* CPU microcode mitigates the vulnerability: NO
> STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability)

CVE-2018-3639 aka 'Variant 4, speculative store bypass'
* Mitigated according to the /sys interface: NO (Vulnerable)
* Kernel supports speculation store bypass: YES (found in /proc/self/status)
> STATUS: VULNERABLE (Your CPU doesn't support SSBD)

CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault'
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault'
* Kernel supports PTE inversion: NO
* PTE inversion enabled and active: UNKNOWN (sysfs interface not available)
> STATUS: VULNERABLE (Your kernel doesn't support PTE inversion, update it)

CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault'
* This system is a host running an hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: NO
* L1D flush enabled: UNKNOWN (can't find or read /sys/devices/system/cpu/vulnerabilities/l1tf)
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: YES

> STATUS: NOT VULNERABLE (this system is not running an hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:KO CVE-2018-3639:KO CVE-
→˓2018-3615:OK CVE-2018-3620:KO CVE-2018-3646:OK

Need more detailed information about mitigation options? Use --explain
A false sense of security is worse than no security at all, see --disclaimer

2.8.6 SUT Settings - Linux

System provisioning is done by combination of PXE boot unattented install and Ansible59 described inCSIT Testbed Setup60.
Below a subset of the running configuration:

1. Xeon Haswell - Ubuntu 18.04.1 LTS
$ lsb_release -a
No LSB modules are available.

(continues on next page)
59 https://www.ansible.com60 https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1901_3

82 Chapter 2. VPP Performance

https://www.ansible.com
https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
Distributor ID: Ubuntu
Description: Ubuntu 18.04.1 LTS
Release: 18.04
Codename: bionic

2. Xeon Skylake - Ubuntu 18.04 LTS
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04 LTS
Release: 18.04
Codename: bionic

Linux Boot Parameters

• isolcpus=<cpu number>-<cpu number> used for all cpu cores apart from first core of each socketused for running VPP worker threads and Qemu/LXC processes https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• intel_pstate=disable - [X86] Do not enable intel_pstate as the default scaling driver for the sup-ported processors. Intel P-State driver decide what P-state (CPU core power state) to use basedon requesting policy from the cpufreq core. [X86 - Either 32-bit or 64-bit x86] https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
• nohz_full=<cpu number>-<cpu number> - [KNL,BOOT] In kernels built with CON-FIG_NO_HZ_FULL=y, set the specified list of CPUs whose tick will be stopped wheneverpossible. The boot CPU will be forced outside the range to maintain the timekeeping. The CPUsin this range must also be included in the rcu_nocbs= set. Specifies the adaptive-ticks CPU cores,causing kernel to avoid sending scheduling-clock interrupts to listed cores as long as they have asingle runnable task. [KNL - Is a kernel start-up parameter, SMP - The kernel is an SMP kernel].https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
• rcu_nocbs - [KNL] In kernels built with CONFIG_RCU_NOCB_CPU=y, set the specified list of CPUsto be no-callback CPUs, that never queue RCU callbacks (read-copy update). https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• numa_balancing=disable - [KNL,X86] Disable automatic NUMA balancing.
• intel_iommu=enable - [DMAR] Enable Intel IOMMU driver (DMAR) option.
• iommu=on, iommu=pt - [x86, IA-64] Disable IOMMU bypass, using IOMMU for PCI devices.
• nmi_watchdog=0 - [KNL,BUGS=X86] Debugging features for SMP kernels. Turn hardlockup detec-tor in nmi_watchdog off.
• nosoftlockup - [KNL] Disable the soft-lockup detector.
• tsc=reliable - Disable clocksource stability checks for TSC. [x86] reliable: mark tsc clocksource asreliable, this disables clocksource verification at runtime, as well as the stability checks done atbootup. Used to enable high-resolution timer mode on older hardware, and in virtualized environ-ment.
• hpet=disable - [X86-32,HPET] Disable HPET and use PIT instead.

Hugepages Configuration

Huge pages are namaged via sysctl configuration located in /etc/sysctl.d/90-csit.conf on each testbed.Default huge page size is 2M. The exact amount of huge pages depends on testbed. All the values aredefined in Ansible inventory - hosts files.

2.8. Test Environment 83

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

CSIT REPORT, Release rls1901_3

Applied Boot Cmdline

1. Xeon Haswell - Ubuntu 18.04.1 LTS
$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-36-generic root=UUID=5d2ecc97-245b-4e94-b0ae-c3548567de19 ro isolcpus=1-
→˓17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable␣
→˓intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
→˓cstate=1 hpet=disable tsc=reliable mce=off console=tty0 console=ttyS0,115200n8

2. Xeon Skylake - Ubuntu 18.04 LTS
$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-23-generic root=UUID=3fa246fd-1b80-4361-bb90-f339a6bbed51 ro isolcpus=1-
→˓27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83,85-111 numa_
→˓balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

Linux CFS Tunings

Linux CFS scheduler tunings are applied to all QEMU vCPU worker threads (the ones handling testpmdPMD threads) and VPP data plane worker threads. List of VPP data plane threads can be obtained byrunning:
$ for psid in $(pgrep vpp)
$ do
$ for tid in $(ps -Lo tid --pid $psid | grep -v TID)
$ do
$ echo $tid
$ done
$ done

Or:
$ cat /proc/`pidof vpp`/task/*/stat | awk '{print $1" "$2" "$39}'

CFS round-robin scheduling with highest priority is applied using:
$ for psid in $(pgrep vpp)
$ do
$ for tid in $(ps -Lo tid --pid $psid | grep -v TID)
$ do
$ chrt -r -p 1 $tid
$ done
$ done

More information about Linux CFS can be found in Sched manual pages61.
Host Writeback Affinity

Writebacks are pinned to core 0. The same configuration is applied in host Linux and guest VM.
$ echo 1 | sudo tee /sys/bus/workqueue/devices/writeback/cpumask

61 http://man7.org/linux/man-pages/man7/sched.7.html

84 Chapter 2. VPP Performance

http://man7.org/linux/man-pages/man7/sched.7.html

CSIT REPORT, Release rls1901_3

2.8.7 DUT Settings - VPP

VPP Version

VPP-19.01.3 release
VPP Compile Parameters

FD.io VPP compile job62

VPP Install Parameters

$ dpkg -i --force-all vpp*

VPP Startup Configuration

VPP startup configuration vary per test case, with different settings for $$CORELIST_WORKERS,
$$NUM_RX_QUEUES, $$UIO_DRIVER, $$NUM- MBUFS and $$NO_MULTI_SEG parameter. Default tem-plate is provided below:
ip
{

heap-size 4G
}
statseg
{

size 4G
}
unix
{

cli-listen /run/vpp/cli.sock
log /tmp/vpe.log
nodaemon

}
ip6
{

heap-size 4G
hash-buckets 2000000

}
heapsize 4G
plugins
{

plugin default
{

disable
}
plugin dpdk_plugin.so
{

enable
}

}
cpu
{

corelist-workers $$CORELIST_WORKERS
main-core 1

}

(continues on next page)
62 https://jenkins.fd.io/view/vpp/job/vpp-merge-1901_3-ubuntu1604/

2.8. Test Environment 85

https://jenkins.fd.io/view/vpp/job/vpp-merge-1901_3-ubuntu1604/

CSIT REPORT, Release rls1901_3

(continued from previous page)
dpdk
{

num-mbufs $$NUM-MBUFS
uio-driver $$UIO_DRIVER
$$NO_MULTI_SEG
log-level debug
dev default
{

num-rx-queues $$NUM_RX_QUEUES
}
socket-mem 1024,1024
no-tx-checksum-offload
dev $$DEV_1
dev $$DEV_2

}

Description of VPP startup settings used in CSIT is provided in Test Methodology (page 9).

2.8.8 TG Settings - TRex

TG Version

TRex v2.35
DPDK Version

DPDK v17.11
TG Build Script Used

TRex intallation63

TG Startup Configuration

$ cat /etc/trex_cfg.yaml
- port_limit : 2

version : 2
interfaces : ["0000:0d:00.0","0000:0d:00.1"]
port_info :

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]

TG Startup Command

$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.log 2>
→˓&1 &'> /dev/null

63 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3

86 Chapter 2. VPP Performance

https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3

CSIT REPORT, Release rls1901_3

TG API Driver

TRex driver64

64 https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1901_3

2.8. Test Environment 87

https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1901_3

CSIT REPORT, Release rls1901_3

2.9 Documentation

2.9.1 Container Orchestration in CSIT

Overview

Linux Containers

Linux Containers is an OS-level virtualization method for running multiple isolated Linux systems (con-tainers) on a compute host using a single Linux kernel. Containers rely on Linux kernel cgroups func-tionality for controlling usage of shared system resources (i.e. CPU, memory, block I/O, network) and fornamespace isolation. The latter enables complete isolation of applications’ view of operating environ-ment, including process trees, networking, user IDs and mounted file systems.
LXC (Linux Containers) combine kernel’s cgroups and support for isolated namespaces to provide an iso-lated environment for applications. Docker does use LXC as one of its execution drivers, enabling imagemanagement and providing deployment services. More information in [lxc] (page 282), [lxcnamespace](page 282) and [stgraber] (page 282).
Linux containers can be of two kinds: privileged containers and unprivileged containers.
Unprivileged Containers

Running unprivileged containers is the safest way to run containers in a production environment. FromLXC 1.0 one can start a full system container entirely as a user, allowing to map a range of UIDs on thehost into a namespace inside of which a user with UID 0 can exist again. In other words an unprivilegedcontainer does mask the userid from the host, making it impossible to gain a root access on the host evenif a user gets root in a container. With unprivileged containers, non-root users can create containers andwill appear in the container as the root, but will appear as userid <non-zero> on the host. Unprivilegedcontainers are also better suited to supporting multi-tenancy operating environments. More informationin [lxcsecurity] (page 282) and [stgraber] (page 282).
Privileged Containers

Privileged containers do not mask UIDs, and container UID 0 is mapped to the host UID 0. Security andisolation is controlled by a good configuration of cgroup access, extensive AppArmor profile preventingthe known attacks as well as container capabilities and SELinux. Here a list of applicable security controlmechanisms:
• Capabilities - keep (whitelist) or drop (blacklist) Linux capabilities, [capabilities] (page 282).
• Control groups - cgroups, resource bean counting, resource quotas, access restrictions, [cgroup1](page 282), [cgroup2] (page 282).
• AppArmor - apparmor profiles aim to prevent any of the known ways of escaping a container orcause harm to the host, [apparmor] (page 282).
• SELinux - Security Enhanced Linux is a Linux kernel security module that provides similar functionto AppArmor, supporting access control security policies including United States Department ofDefense–style mandatory access controls. Mandatory access controls allow an administrator of asystem to define how applications and users can access different resources such as files, devices,networks and inter- process communication, [selinux] (page 282).
• Seccomp - secure computing mode, enables filtering of system calls, [seccomp] (page 282).

More information in [lxcsecurity] (page 282) and [lxcsecfeatures] (page 282).
Linux Containers in CSIT

88 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

CSIT is using Privileged Containers as the sysfs is mounted with RW access. Sysfs is required to bemounted as RW due to VPP accessing /sys/bus/pci/drivers/uio_pci_generic/unbind. This is not thecase of unprivileged containers where sysfs is mounted as read-only.
Orchestrating Container Lifecycle Events

Following Linux container lifecycle events need to be addressed by an orchestration system:
1. Acquire - acquiring/downloading existing container images via docker pull or lxc-create -t

download.
2. Build - building a container image from scratch or another container image via docker build

<dockerfile/composefile> or customizing LXC templates in GitHub65.
3. (Re-)Create - creating a running instance of a container application from anew, or re-creating onethat failed. A.k.a. (re-)deploy via docker run or lxc-start
4. Execute - execute system operations within the container by attaching to running container. THisis done by lxc-attach or docker exec

5. Distribute - distributing pre-built container images to the compute nodes. Currently not imple-mented in CSIT.
Container Orchestration Systems Used in CSIT

Current CSIT testing framework integrates following Linux container orchestration mechanisms:
• LXC/Docker for complete VPP container lifecycle control.
• Combination of Kubernetes (container orchestration), Docker (container images) and Ligato (con-tainer networking).

LXC

LXC is the well-known and heavily tested low-level Linux container runtime [lxcsource] (page 282), thatprovides a userspace interface for the Linux kernel containment features. With a powerful API and simpletools, LXC enables Linux users to easily create and manage system or application containers. LXC usesfollowing kernel features to contain processes:
• Kernel namespaces: ipc, uts, mount, pid, network and user.
• AppArmor and SELinux security profiles.
• Seccomp policies.
• Chroot.
• Cgroups.

CSIT uses LXC runtime and LXC usertools to test VPP data plane performance in a range of virtual net-working topologies.
Known Issues

• Current CSIT restriction: only single instance of lxc runtime due to the cgroup policies used in CSIT.There is plan to add the capability into code to create cgroups per container instance to address thisissue. This sort of functionality is better supported in LXC 2.1 but can be done is current version aswell.
• CSIT code is currently using cgroup to control the range of CPU cores the LXC container runs on.VPP thread pinning is defined vpp startup.conf.

65 https://github.com/lxc/lxc/tree/master/templates

2.9. Documentation 89

https://github.com/lxc/lxc/tree/master/templates

CSIT REPORT, Release rls1901_3

Docker

Docker builds on top of Linux kernel containment features, and offers a high-level tool for wrapping theprocesses, maintaining and executing them in containers [docker] (page 282). Currently it using runc a CLItool for spawning and running containers according to the OCI specification66
A Docker container image is a lightweight, stand-alone, executable package of a piece of software thatincludes everything needed to run it: code, runtime, system tools, system libraries, settings.
CSIT uses Docker to manage the maintenance and execution of containerized applications used in CSITperformance tests.

• Data plane thread pinning to CPU cores - Docker CLI and/or Docker configuration file controls therange of CPU cores the Docker image must run on. VPP thread pinning defined vpp startup.conf.
Kubernetes

Kubernetes [k8sdoc] (page 282), or K8s, is a production-grade container orchestration platform for au-tomating the deployment, scaling and operating application containers. Kubernetes groups containersthat make up an application into logical units, pods, for easy management and discovery. K8s pod defini-tions including compute resource allocation is provided in .yaml files.
CSIT uses K8s and its infrastructure components like etcd to control all phases of container based virtu-alized network topologies.
Ligato

Ligato [ligato] (page 282) is an open-source project developing a set of cloud-native tools for orchestratingcontainer networking. Ligato integrates with FD.io VPP using goVPP [govpp] (page 282) and vpp-agent
[vppagent] (page 282).
Known Issues

• Currently using a separate LF Jenkins job for building csit-centric prod_vpp_agent docker imagesvs. dockerhub/ligato ones.
Implementation

CSIT container orchestration is implemented in CSIT Level-1 keyword Python libraries following theBuilder design pattern. Builder design pattern separates the construction of a complex object from its rep-resentation, so that the same construction process can create different representations e.g. LXC, Docker,other.
CSIT Robot Framework keywords are then responsible for higher level lifecycle control of of the namedcontainer groups. One can have multiple named groups, with 1..N containers in a group performing dif-ferent role/functionality e.g. NFs, Switch, Kafka bus, ETCD datastore, etc. ContainerManager class actsas a Director and uses ContainerEngine class that encapsulate container control.
Current CSIT implementation is illustrated using UML Class diagram:

1. Acquire
2. Build
3. (Re-)Create
4. Execute

66 https://www.opencontainers.org/

90 Chapter 2. VPP Performance

https://www.opencontainers.org/

CSIT REPORT, Release rls1901_3

+---+
| RF Keywords (high level lifecycle control) |
+---+
| Construct VNF containers on all DUTs |
| Acquire all '${group}' containers |
| Create all '${group}' containers |
| Install all '${group}' containers |
| Configure all '${group}' containers |
| Stop all '${group}' containers |
| Destroy all '${group}' containers |
+-----------------+---+

| 1
|
| 1..N

+-----------------v-----------------+ +--------------------------+
| ContainerManager | | ContainerEngine |
+-----------------------------------+ +--------------------------+
__init()__		__init(node)__
construct_container()		acquire(force)
construct_containers()		create()
acquire_all_containers()		stop()
create_all_containers()	1 1	destroy()
execute_on_container() <>-------	info()	
execute_on_all_containers()		execute(command)
install_vpp_in_all_containers()		system_info()
configure_vpp_in_all_containers()		install_supervisor()
stop_all_containers()		install_vpp()
destroy_all_containers()		restart_vpp()
+-----------------------------------+ | create_vpp_exec_config() |

| create_vpp_startup_config|
| is_container_running() |
| is_container_present() |
| _configure_cgroup() |
+-------------^------------+

|
|
|

+----------+---------+
| |

+------+-------+ +------+-------+
| LXC | | Docker |
+--------------+ +--------------+
| (inherinted) | | (inherinted) |
+------+-------+ +------+-------+

| |
+---------+---------+

|
| constructs
|

+---------v---------+
| Container |
+-------------------+
| __getattr__(a) |
| __setattr__(a, v) |
+-------------------+

Sequentional diagram that illustrates the creation of a single container.
Legend:

e = engine [Docker|LXC]
.. = kwargs (variable number of keyword argument)

(continues on next page)

2.9. Documentation 91

CSIT REPORT, Release rls1901_3

(continued from previous page)
+-------+ +------------------+ +-----------------+
| RF KW | | ContainerManager | | ContainerEngine |
+---+---+ +--------+---------+ +--------+--------+

| | |
| 1: new ContainerManager(e) | |
+-+---------------------------->+-+ |
|-| |-| 2: new ContainerEngine |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| +-+ +-+
|-| | |
|-| 3: construct_container(..) | |
|-+---------------------------->+-+ |
|-| |-| 4: init() |
|-| |-+----------------------->+-+
|-| |-| |-| 5: new +-------------+
|-| |-| |-+-------->| Container A |
|-| |-| |-| +-------------+
|-| |-|<-----------------------+-|
|-| +-+ +-+
|-| | |
|-| 6: acquire_all_containers() | |
|-+---------------------------->+-+ |
|-| |-| 7: acquire() |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| |-| |-+--+
|-| |-| |-| | 8: is_container_present()
|-| |-| True/False |-|<-+
|-| |-| |-|
|-| |-| |-|

+---+
	-	ALT [isRunning & force]	-		-	--+	
	-		-		-		8a: destroy()
	-		-		-<--+		
+---+

|-| |-| |-|
|-| +-+ +-+
|-| | |
|-| 9: create_all_containers() | |
|-+---------------------------->+-+ |
|-| |-| 10: create() |
|-| |-+----------------------->+-+
|-| |-| |-+--+
|-| |-| |-| | 11: wait('RUNNING')
|-| |-| |-<--+
|-| +-+ +-+
|-| | |

+---+
	-	ALT		
	-	(install_vpp, configure_vpp)		
	-			
+---+

|-| | |
|-| 12: destroy_all_containers() | |
|-+---------------------------->+-+ |
|-| |-| 13: destroy() |
|-| |-+----------------------->+-+
|-| |-| |-|
|-| +-+ +-+
|-| | |

(continues on next page)

92 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
+++ | |
| | |
+ + +

Container Data Structure

Container is represented in Python L1 library as a separate Class with instance variables and no methodsexcept overriden __getattr__ and __setattr__. Instance variables are assigned to container dynamicallyduring the construct_container(**kwargs) call and are passed down from the RF keyword.
Usage example:
| Construct VNF containers on all DUTs
| | [Arguments] | ${technology} | ${image} | ${cpu_count}=${1} | ${count}=${1}
| | ...
| | ${group}= | Set Variable | VNF
| | ${skip_cpus}= | Evaluate | ${vpp_cpus}+${system_cpus}
| | Import Library | resources.libraries.python.ContainerUtils.ContainerManager
| | ... | engine=${container_engine} | WITH NAME | ${group}
| | ${duts}= | Get Matches | ${nodes} | DUT*
| | :FOR | ${dut} | IN | @{duts}
| | | ${env}= | Create List | DEBIAN_FRONTEND=noninteractive
| | | ${mnt}= | Create List | /tmp:/mnt/host | /dev:/dev
| | | ${cpu_node}= | Get interfaces numa node | ${nodes['${dut}']}
| | | ... | ${dut1_if1} | ${dut1_if2}
| | | Run Keyword | ${group}.Construct containers
| | | ... | name=${dut}_${group} | node=${nodes['${dut}']} | mnt=${mnt}
| | | ... | image=${container_image} | cpu_count=${container_cpus}
| | | ... | cpu_skip=${skip_cpus} | cpuset_mems=${cpu_node}
| | | ... | cpu_shared=${False} | env=${env} | count=${container_count}
| | | ... | install_dkms=${container_install_dkms}
| | Append To List | ${container_groups} | ${group}

Mandatory parameters to create standalone container are: node, name, image [imagevar] (page 283),
cpu_count, cpu_skip, cpuset_mems, cpu_shared.
There is no parameters check functionality. Passing required arguments is in coder responsibility. All theabove parameters are required to calculate the correct cpu placement. See documentation for the fullreference.
Kubernetes

Kubernetes is implemented as separate library KubernetesUtils.py, with a class with the same name.This utility provides an API for L2 Robot Keywords to control kubectl installed on each of DUTs. Onetime initialization script, resources/libraries/bash/k8s_setup.sh does reset/init kubectl, applies Calicov2.6.3 and initializes the csit namespace. CSIT namespace is required to not to interfere with existingsetups and it further simplifies apply/get/delete Pod/ConfigMap operations on SUTs.
Kubernetes utility is based on YAML templates to avoid crafting the huge YAML configuration files, whatwould lower the readability of code and requires complicated algorithms. The templates can be found in
resources/templates/kubernetes and can be leveraged in the future for other separate tasks.
Two types of YAML templates are defined:

• Static - do not change between deployments, that is infrastructure containers like Kafka, Calico,ETCD.
• Dynamic - per test suite/case topology YAML files e.g. SFC_controller, VNF, VSWITCH.

2.9. Documentation 93

CSIT REPORT, Release rls1901_3

Making own python wrapper library of kubectl instead of using the official Python package allows tocontrol and deploy environment over the SSH library without the need of using isolated driver runningon each of DUTs.
Ligato

Ligato integration does require to compile the vpp-agent tool and build the bundled Docker image. Com-pilation of vpp-agent depends on specific VPP. In ligato/vpp-agent repository there are well preparedscripts for building the Docker image. Building docker image is possible via series of commands:
git clone https://github.com/ligato/vpp-agent
cd vpp_agent/docker/dev_vpp_agent
sudo docker build -t dev_vpp_agent --build-arg AGENT_COMMIT=<agent commit id>\

--build-arg VPP_COMMIT=<vpp commit id> --no-cache .
sudo ./shrink.sh
cd ../prod_vpp_agent
sudo ./build.sh
sudo ./shrink.sh

CSIT requires Docker image to include the desired VPP version (per patch testing, nightly testing, ondemand testing).
The entire build process of building dev_vpp_agent image heavily depends on internet connectivity andalso takes a significant amount of time (~1-1.5h based on internet bandwidth and allocated resources).The optimal solution would be to build the image on jenkins slave, transfer the Docker image to DUTsand execute separate suite of tests.
To adress the amount of time required to build dev_vpp_agent image, we can pull existing specific versionof `dev_vpp_agent` and exctract the `vpp-agent` from it.
We created separate sets of Jenkins jobs, that will be executing following:

1. Clone latest CSIT and Ligato repositaries.
2. Pull specific version of dev_vpp_agent image from Dockerhub.
3. Extract VPP API (from .deb package) and copy into dev_vpp_agent image
4. Rebuild vpp-agent and extract outside image.
5. Build prod_vpp_image Docker image from dev_vpp_agent image.
6. Transfer prod_vpp_agent image to DUTs.
7. Execute subset of performance tests designed for Ligato testing.

+---+
| ubuntu:16.04 <-----| Base image on Dockerhub
+------------------------^----------------------+

|
|

+------------------------+----------------------+
| ligato/dev_vpp_agent <------| Pull this image from
+------------------------^----------------------+ | Dockerhub ligato/dev_vpp_agent:<version>

|
| Rebuild and extract agent.tar.gz from dev_vpp_agent

+------------------------+----------------------+
| prod_vpp_agent <------| Build by passing own
+---+ | vpp.tar.gz (from nexus

| or built by JJB) and
| agent.tar.gz extracted
| from ligato/dev_vpp_agent

Approximate size of vnf-agent docker images:

94 Chapter 2. VPP Performance

CSIT REPORT, Release rls1901_3

REPOSITORY TAG IMAGE ID CREATED SIZE
dev-vpp-agent latest 78c53bd57e2 6 weeks ago 9.79GB
prod_vpp_agent latest f68af5afe601 5 weeks ago 443MB

In CSIT we need to create separate performance suite under tests/kubernetes/perf which containsmodified Suite setup in comparison to standard perf tests. This is due to reason that VPP will act asvswitch in Docker image and not as standalone installed service.
Tested Topologies

Listed CSIT container networking test topologies are defined with DUT containerized VPP switch for-warding packets between NF containers. Each NF container runs their own instance of VPP in L2XCconfiguration.
Following container networking topologies are tested in CSIT-1901.3:

• LXC topologies:
– eth-l2xcbase-eth-2memif-1lxc.
– eth-l2bdbasemaclrn-eth-2memif-1lxc.

• Docker topologies:
– eth-l2xcbase-eth-2memif-1docker.
– eth-l2xcbase-eth-1memif-1docker

• Kubernetes/Ligato topologies:
– eth-1drcl2bdbasemaclrn-eth-2memif-1drcl2xc-1paral
– eth-1drcl2bdbasemaclrn-eth-2memif-2drcl2xc-1horiz
– eth-1drcl2bdbasemaclrn-eth-2memif-4drcl2xc-1horiz
– eth-1drcl2bdbasemaclrn-eth-4memif-2drcl2xc-1chain
– eth-1drcl2bdbasemaclrn-eth-8memif-4drcl2xc-1chain
– eth-1drcl2xcbase-eth-2memif-1drcl2xc-1paral
– eth-1drcl2xcbase-eth-2memif-2drcl2xc-1horiz
– eth-1drcl2xcbase-eth-2memif-4drcl2xc-1horiz
– eth-1drcl2xcbase-eth-4memif-2drcl2xc-1chain
– eth-1drcl2xcbase-eth-8memif-4drcl2xc-1chain

References

2.9.2 Test Code Documentation

CSIT VPP Performance Tests Documentation84 contains detailed functional description and input param-eters for each test case.

84 https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.perf.html

2.9. Documentation 95

https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.perf.html

CHAPTER3

DPDK Performance

3.1 Overview

DPDK performance test results are reported for all three physical testbed types present in FD.io labs: 3-Node Xeon Haswell (3n-hsw), 3-Node Xeon Skylake (3n-skx), 2-Node Xeon Skylake (2n-skx) and installedNICmodels. For description of physical testbeds used forDPDKperformance tests please refer to Physical
Testbeds (page 4).

3.1.1 Logical Topologies

CSIT DPDK performance tests are executed on physical testbeds described in Physical Testbeds (page 4).Based on the packet path through server SUTs, one distinct logical topology type is used for DPDK DUTdata plane testing: NIC-to-NIC switching topology.
NIC-to-NIC Switching

The simplest logical topology for software data plane application like DPDK is NIC-to-NIC switching.Tested topologies for 2-Node and 3-Node testbeds are shown in figures below.

96

CSIT REPORT, Release rls1901_3

System Under Test (SUT)

 DUT

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

2-Node Topology: NIC-to-NIC Switching

Forwarding
Context

System Under Test 1 (SUT1)

 DUT1

Traffic Generator (TG)

NIC

Linux
Kernel

Linux-Host
User-Space

System Under Test 2 (SUT2)

 DUT2

NIC

Linux
Kernel

Linux-Host
User-Space

3-Node Topology: NIC-to-NIC Switching

Forwarding
Context

Forwarding
Context

Server Systems Under Test (SUT) run DPDK Testpmd or L3fwd application in Linux user-mode as a DeviceUnder Test (DUT). Server Traffic Generator (TG) runs T-Rex application. Physical connectivity betweenSUTs and TG is provided using different drivers and NIC models that need to be tested for performance(packet/bandwidth throughput and latency).
From SUT and DUT perspectives, all performance tests involve forwarding packets between two physicalEthernet ports (10GE, 25GE, 40GE, 100GE). In most cases both physical ports on SUT are located on thesame NIC. The only exceptions are link bonding and 100GE tests. In the latter case only one port per NICcan be driven at linerate due to PCIe Gen3 x16 slot bandwidth limiations. 100GE NICs are not supportedin PCIe Gen3 x8 slots.

3.1. Overview 97

CSIT REPORT, Release rls1901_3

Note that reported DPDK DUT performance results are specific to the SUTs tested. SUTs with otherprocessors than the ones used in FD.io lab are likely to yield different results. A good rule of thumb, thatcan be applied to estimate DPDK packet thoughput for NIC-to-NIC switching topology, is to expect theforwarding performance to be proportional to processor core frequency for the same processor architec-ture, assuming processor is the only limiting factor and all other SUT parameters are equivalent to FD.ioCSIT environment.

3.1.2 Performance Tests Coverage

Performance tests measure following metrics for tested DPDK DUT topologies and configurations:
• Packet Throughput: measured in accordance with RFC 254485, using FD.io CSITMultiple Loss Ratiosearch (MLRsearch), an optimized binary search algorithm, producing throughput at different PacketLoss Ratio (PLR) values:

– Non Drop Rate (NDR): packet throughput at PLR=0%.
– Partial Drop Rate (PDR): packet throughput at PLR=0.5%.

• One-Way Packet Latency: measured at different offered packet loads:
– 100% of discovered NDR throughput.
– 100% of discovered PDR throughput.

• Maximum Receive Rate (MRR): measured packet forwarding rate under the maximum load offeredby traffic generator over a set trial duration, regardless of packet loss. Maximum load for specifiedEthernet frame size is set to the bi-directional link rate.
CSIT-1901.3 includes following DPDK Testpmd and L3fwd data plane functionality performance testedacross a range of NIC drivers and NIC models:
Functionality DescriptionL2IntLoop L2 Interface Loop forwarding all Ethernet frames between two Interfaces.IPv4 RoutedForwarding Longest Prefix Match (LPM) L3 IPv4 forwarding of Ethernet frames between twoInterfaces, with two /8 prefixes in lookup table.

3.2 Release Notes

3.2.1 Changes in CSIT-1901.3

1. DPDK RELEASE VERSION CHANGE
• CSIT-1901.3 tested DPDK 18.11, as used by VPP-19.01.3 release.

3.2.2 Known Issues

No known issues.

85 https://tools.ietf.org/html/rfc2544.html

98 Chapter 3. DPDK Performance

https://tools.ietf.org/html/rfc2544.html

CSIT REPORT, Release rls1901_3

3.3 Packet Throughput

Throughput graphs are generated by multiple executions of the same performance tests across physi-cal testbeds hosted LF FD.io labs: 3n-hsw, 2n-skx, 2n-skx. Box-and-Whisker plots are used to displayvariations in measured throughput values, without making any assumptions of the underlying statisticaldistribution.
For each test case, Box-and-Whisker plots show the quartiles (Min, 1st quartile / 25th percentile, 2ndquartile / 50th percentile / mean, 3rd quartile / 75th percentile, Max) across collected data set. Outliersare plotted as individual points.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize, number of cores and threads used by data plane workers and indication of DPDK DUT config-uration.
2. X-axis Labels: indices of individual test suites as listed in Graph Legend.
3. Y-axis Labels: measured Packets Per Second [pps] throughput values.
4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphedtest results.
5. Hover Information: lists minimum, first quartile, median, third quartile, and maximum. If eithertype of outlier is present the whisker on the appropriate side is taken to 1.5×IQR from the quartile(the “inner fence”) rather than the max or min, and individual outlying data points are displayed asunfilled circles (for suspected outliers) or filled circles (for outliers). (The “outer fence” is 3×IQR fromthe quartile.)

Note: Test results have been generated by FD.io test executor dpdk performance job 3n-hsw86, FD.iotest executor dpdk performance job 3n-skx87 and FD.io test executor dpdk performance job 2n-skx88with RF result files csit-dpdk-perf-1901_3-*.zip archived here. Required per test case data set size is 10and for DPDK tests this is the actual size, as all scheduled test executions completed successfully.

3.3.1 Testpmd

Following sections include summary graphs of DPDK Testpmd Phy-to-Phy performance with L2 EthernetInterface Loop, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss).Performance is reported for Testpmd running in multiple configurations of Testpmd pmd thread(s), a.k.a.Testpmd data plane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository89.

86 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw87 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx88 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx89 https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

3.3. Packet Throughput 99

https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx
https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-x520

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x520-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

100 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x520-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 101

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x520-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

102 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x520-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 103

CSIT REPORT, Release rls1901_3

3n-hsw-x710

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x710-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

104 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x710-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 105

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x710-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

106 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-x710-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 107

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-xl710-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

108 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-xl710-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 109

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-xl710-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

110 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-hsw-xl710-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 111

CSIT REPORT, Release rls1901_3

3n-skx-x710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-x710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

112 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-x710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 113

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-x710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

114 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-x710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 115

CSIT REPORT, Release rls1901_3

3n-skx-xxv710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-xxv710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

116 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-xxv710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 117

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-xxv710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

118 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-3n-skx-xxv710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 119

CSIT REPORT, Release rls1901_3

2n-skx-x710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-x710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

120 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-x710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 121

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-x710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

122 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-x710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 123

CSIT REPORT, Release rls1901_3

2n-skx-xxv710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-xxv710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

124 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-xxv710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 125

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-xxv710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

126 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	eth-l2xcbase-testpmd

Throughput:	testpmd-2n-skx-xxv710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 127

CSIT REPORT, Release rls1901_3

3.3.2 L3fwd

Following sections include summary graphs ofL3FWD Phy-to-Phy performance with packet routed for-warding, including NDR throughput (zero packet loss) and PDR throughput (<0.5% packet loss). Perfor-mance is reported for L3FWD running in multiple configurations of L3FWD pmd thread(s), a.k.a. L3FWDdata plane thread(s), and their physical CPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository90.

90 https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

128 Chapter 3. DPDK Performance

https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-x520

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x520-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 129

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x520-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

130 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x520-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 131

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x520-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

132 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-hsw-x710

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x710-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 133

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x710-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

134 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x710-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 135

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-x710-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

136 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-xl710-64b-1t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 137

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-xl710-64b-1t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

138 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-xl710-64b-2t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 139

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-hsw-xl710-64b-2t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

140 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-skx-x710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-x710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 141

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-x710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

142 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-x710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 143

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-x710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

144 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-skx-xxv710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-xxv710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 145

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-xxv710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

146 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-xxv710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 147

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-3n-skx-xxv710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

148 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

2n-skx-x710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-x710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 149

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-x710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

150 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-x710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 151

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-x710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

152 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

2n-skx-xxv710

64b-2t1c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-xxv710-64b-2t1c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 153

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-xxv710-64b-2t1c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

154 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-xxv710-64b-4t2c-base-ndr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

3.3. Packet Throughput 155

CSIT REPORT, Release rls1901_3

1
0.00

5.00

10.0

15.0

20.0

25.0

1.	(10	runs)	ethip4-ip4base-l3fwd

Throughput:	l3fwd-2n-skx-xxv710-64b-4t2c-base-pdr

Test	Cases	[Index]

Pa
ck
et
	T
hr
ou

gh
pu

t	
[M

pp
s]

156 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3.4 Packet Latency

Latency results are generated from a single execution of NDR discovery test across physical testbedshosted LF FD.io labs: 3n-hsw, 2n-skx, 2n- skx. Box plots are used to show the Minimum, Median andMaximum packet latency per test.
Additional information about graph data:

1. Graph Title: describes tested packet path, testbed topology, processor model, NIC model, packetsize, number of cores and threads used by data plane workers and indication of DUT configuration.
2. X-axis Labels: indices of individual test suites as listed in Graph Legend and direction of latencyflow:

• West-to-East: TGint1-to-SUT1-to-SUT2-to-TGint2.
• East-to-West: TGint2-to-SUT2-to-SUT1-to-TGint1.

3. Y-axis Labels: measured packet latency values in [uSec].
4. Graph Legend: lists X-axis indices with associated CSIT test suites executed to generate graphedtest results.
5. Hover Information: lists number of runs executed, specific test substring, packet flow direction,maximal, mean and minimal values of measured latencies.

Note: Test results have been generated by FD.io test executor dpdk performance job 3n-hsw91, FD.iotest executor dpdk performance job 3n-skx92 and FD.io test executor dpdk performance job 2n-skx93with RF result files csit-dpdk-perf-1901_3-*.zip archived here.

91 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw92 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx93 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx

3.4. Packet Latency 157

https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx

CSIT REPORT, Release rls1901_3

3.4.1 Testpmd

This section includes summary graphs of Testpmd Phy-to-Phy packet latency with L2 Ethernet InterfaceLoop measured at 100% of discovered NDR throughput rate. Latency is reported for Testpmd running inmultiple configurations of Testpmd pmd thread(s), a.k.a. Testpmd data plane thread(s), and their physicalCPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository94.

94 https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

158 Chapter 3. DPDK Performance

https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-x520

64b-1t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-x520-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 159

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-x520-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

160 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-hsw-x710

64b-1t1c-base

0.000

10.00

20.00

30.00

40.00

50.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-x710-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 161

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-x710-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

162 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-xl710-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 163

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

10.00

20.00

30.00

40.00

50.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-hsw-xl710-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

164 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-skx-x710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-skx-x710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 165

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-skx-x710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

166 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3n-skx-xxv710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-skx-xxv710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 167

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

eth-l2xcbase-testpmd

Latency:	testpmd-3n-skx-xxv710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

168 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

2n-skx-x710

64b-2t1c-base

0.000

2.000

4.000

6.000

8.000

10.00

12.00

14.00

16.00

18.00

eth-l2xcbase-testpmd

Latency:	testpmd-2n-skx-x710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 169

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

eth-l2xcbase-testpmd

Latency:	testpmd-2n-skx-x710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

170 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

2n-skx-xxv710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

eth-l2xcbase-testpmd

Latency:	testpmd-2n-skx-xxv710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 171

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

eth-l2xcbase-testpmd

Latency:	testpmd-2n-skx-xxv710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

172 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

3.4.2 L3fwd

This section includes summary graphs of L3FWD Phy-to-Phy performance with packet routed forward-ing measured at 100% of discovered NDR throughput rate. Latency is reported for L3FWD running inmultiple configurations of L3FWD pmd thread(s), a.k.a. L3FWD data plane thread(s), and their physicalCPU core(s) placement.
CSIT source code for the test cases used for plots can be found in CSIT git repository95.

95 https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

3.4. Packet Latency 173

https://git.fd.io/csit/tree/tests/dpdk/perf?h=rls1901

CSIT REPORT, Release rls1901_3

3n-hsw-x520

64b-1t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-x520-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

174 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-x520-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 175

CSIT REPORT, Release rls1901_3

3n-hsw-x710

64b-1t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-x710-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

176 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

10.00

20.00

30.00

40.00

50.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-x710-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 177

CSIT REPORT, Release rls1901_3

3n-hsw-xl710

64b-1t1c-base

0.000

10.00

20.00

30.00

40.00

50.00

60.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-xl710-64b-1t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

178 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-2t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

35.00

40.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-hsw-xl710-64b-2t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 179

CSIT REPORT, Release rls1901_3

3n-skx-x710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-skx-x710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

180 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-skx-x710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 181

CSIT REPORT, Release rls1901_3

3n-skx-xxv710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-skx-xxv710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

182 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-3n-skx-xxv710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 183

CSIT REPORT, Release rls1901_3

2n-skx-x710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-2n-skx-x710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

184 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-2n-skx-x710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 185

CSIT REPORT, Release rls1901_3

2n-skx-xxv710

64b-2t1c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-2n-skx-xxv710-64b-2t1c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

186 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

64b-4t2c-base

0.000

5.000

10.00

15.00

20.00

25.00

30.00

ethip4-ip4base-l3fwd

Latency:	l3fwd-2n-skx-xxv710-64b-4t2c-base-ndr

Direction

Pa
ck
et
	L
at
en

cy
	[u

Se
c]

W-E E-W

3.4. Packet Latency 187

CSIT REPORT, Release rls1901_3

3.5 Comparisons

3.5.1 Current vs. Previous Release

Relative comparison of DPDK Testpmd and L3fwd packet throughput (NDR, PDR and MRR) betweenDPDK 18.11 andDPDK-18.02 (measured for CSIT-1901.3 and CSIT-1810 respectively) is calculated fromresults of tests running on 3-Node Intel Xeon Haswell testbeds (3n-hsw) in 1-core and 2-core configura-tions.
Listed mean and standard deviation values are computed based on a series of the same tests executedagainst respective DPDK releases to verify test results repeatability, with percentage change calculatedfor mean values.
Note: Test results have been generated by FD.io test executor dpdk performance job 3n-hsw96 with RFresult files csit-dpdk-perf-1901_3-*.zip archived here.

3n-hsw

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 1t1c NDR comparison
• ASCII 2t2c NDR comparison
• CSV 1t1c NDR comparison
• CSV 2t2c NDR comparison

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 1t1c PDR comparison
• ASCII 2t2c PDR comparison
• CSV 1t1c PDR comparison
• CSV 2t2c PDR comparison

3n-skx

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 2t1c NDR comparison
• ASCII 4t1c NDR comparison
• CSV 2t1c NDR comparison
• CSV 4t1c NDR comparison

96 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw

188 Chapter 3. DPDK Performance

https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw
../../_static/dpdk/performance-changes-3n-hsw-1t1c-ndr.txt
../../_static/dpdk/performance-changes-3n-hsw-2t2c-ndr.txt
../../_static/dpdk/performance-changes-3n-hsw-1t1c-ndr.csv
../../_static/dpdk/performance-changes-3n-hsw-2t2c-ndr.csv
../../_static/dpdk/performance-changes-3n-hsw-1t1c-pdr.txt
../../_static/dpdk/performance-changes-3n-hsw-2t2c-pdr.txt
../../_static/dpdk/performance-changes-3n-hsw-1t1c-pdr.csv
../../_static/dpdk/performance-changes-3n-hsw-2t2c-pdr.csv
../../_static/dpdk/performance-changes-3n-skx-2t1c-ndr.txt
../../_static/dpdk/performance-changes-3n-skx-4t2c-ndr.txt
../../_static/dpdk/performance-changes-3n-skx-2t1c-ndr.csv
../../_static/dpdk/performance-changes-3n-skx-4t2c-ndr.csv

CSIT REPORT, Release rls1901_3

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 2t1c PDR comparison
• ASCII 4t1c PDR comparison
• CSV 2t1c PDR comparison
• CSV 4t1c PDR comparison

2n-skx

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 2t1c NDR comparison
• ASCII 4t1c NDR comparison
• CSV 2t1c NDR comparison
• CSV 4t1c NDR comparison

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII 2t1c PDR comparison
• ASCII 4t1c PDR comparison
• CSV 2t1c PDR comparison
• CSV 4t1c PDR comparison

3.5.2 3n-Skx vs. 3n-Hsw Testbeds

Relative comparison of DPDK 18.11 Testpmd and L3fwd packet throughput (NDR, PDR and MRR) iscalculated for the same tests executed on 3-Node Skylake (3n-skx) and 3-Node Haswell (3n-hsw) physicaltestbed types, in 1-core, 2-core and 4-core configurations.
Note: Test results have been generated by FD.io test executor dpdk performance job 3n-hsw97 and FD.iotest executor dpdk performance job 3n-skx98 with RF result files csit-dpdk-perf-1901_3-*.zip archivedhere.

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII NDR comparison
• CSV NDR comparison

97 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw98 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx

3.5. Comparisons 189

../../_static/dpdk/performance-changes-3n-skx-2t1c-pdr.txt
../../_static/dpdk/performance-changes-3n-skx-4t2c-pdr.txt
../../_static/dpdk/performance-changes-3n-skx-2t1c-pdr.csv
../../_static/dpdk/performance-changes-3n-skx-4t2c-pdr.csv
../../_static/dpdk/performance-changes-2n-skx-2t1c-ndr.txt
../../_static/dpdk/performance-changes-2n-skx-4t2c-ndr.txt
../../_static/dpdk/performance-changes-2n-skx-2t1c-ndr.csv
../../_static/dpdk/performance-changes-2n-skx-4t2c-ndr.csv
../../_static/dpdk/performance-changes-2n-skx-2t1c-pdr.txt
../../_static/dpdk/performance-changes-2n-skx-4t2c-pdr.txt
../../_static/dpdk/performance-changes-2n-skx-2t1c-pdr.csv
../../_static/dpdk/performance-changes-2n-skx-4t2c-pdr.csv
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-hsw
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
../../_static/dpdk/performance-compare-testbeds-3n-hsw-3n-skx-ndr.txt
../../_static/dpdk/performance-compare-testbeds-3n-hsw-3n-skx-ndr.csv

CSIT REPORT, Release rls1901_3

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII PDR comparison
• CSV PDR comparison

3.5.3 3n-Skx vs. 2n-Skx Testbeds

Relative comparison of DPDK 18.11 Testpmd and L3fwd packet throughput (NDR, PDR and MRR) iscalculated for the same tests executed on 3-Node Skylake (3n-skx) and 2-Node Skylake (2n-skx) physicaltestbed types, in 1-core, 2-core and 4-core configurations.
Note: Test results have been generated by FD.io test executor dpdk performance job 3n-skx99 and FD.iotest executor dpdk performance job 2n-skx100 with RF result files csit-dpdk-perf-1901_3-*.zip archivedhere.

NDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII NDR comparison
• CSV NDR comparison

PDR Comparison

Comparison tables in ASCII and CSV formats:
• ASCII PDR comparison
• CSV PDR comparison

3.6 Throughput Trending

In addition to reporting throughput comparison between DPDK releases, CSIT provides regular perfor-mance trending for DPDK release branches:
1. Performance Dashboard101: per DPDK test case throughput trend, trend compliance and summaryof detected anomalies.
2. Trending Methodology102: throughput test metrics, trend calculations and anomaly classification(progression, regression).
3. DPDK Trendline Graphs103: weekly DPDK Testpmd and L3fwd MRR throughput measurementsagainst the trendline with anomaly highlights and associated CSIT test jobs.

99 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx100 https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx101 https://docs.fd.io/csit/master/trending/introduction/index.html102 https://docs.fd.io/csit/master/trending/methodology/index.html103 https://docs.fd.io/csit/master/trending/trending/dpdk.html

190 Chapter 3. DPDK Performance

../../_static/dpdk/performance-compare-testbeds-3n-hsw-3n-skx-pdr.txt
../../_static/dpdk/performance-compare-testbeds-3n-hsw-3n-skx-pdr.csv
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-3n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx
https://jenkins.fd.io/view/csit/job/csit-dpdk-perf-verify-1901_3-2n-skx
../../_static/dpdk/performance-compare-topologies-3n-skx-2n-skx-ndr.txt
../../_static/dpdk/performance-compare-topologies-3n-skx-2n-skx-ndr.csv
../../_static/dpdk/performance-compare-topologies-3n-skx-2n-skx-pdr.txt
../../_static/dpdk/performance-compare-topologies-3n-skx-2n-skx-pdr.csv
https://docs.fd.io/csit/master/trending/introduction/index.html
https://docs.fd.io/csit/master/trending/methodology/index.html
https://docs.fd.io/csit/master/trending/trending/dpdk.html

CSIT REPORT, Release rls1901_3

3.7 Test Environment

3.7.1 Physical Testbeds

FD.io CSIT performance tests are executed in physical testbeds hosted by LF for FD.io project. Twophysical testbed topology types are used:
• 3-Node Topology: Consisting of two servers acting as SUTs (Systems Under Test) and one server asTG (Traffic Generator), all connected in ring topology.
• 2-Node Topology: Consisting of one server acting as SUTs and one server as TG both connected inring topology.

Tested SUT servers are based on a range of processors including Intel Xeon Haswell-SP, Intel XeonSkylake-SP, Arm, Intel Atom. More detailed description is provided in Physical Testbeds (page 4). Testedlogical topologies are described in Logical Topologies (page 30).

3.7.2 Server Specifications

Complete technical specifications of compute servers used in CSIT physical testbeds are maintained inFD.io CSIT repository: FD.io CSIT testbeds - Xeon Skylake, Arm, Atom104 and FD.io CSIT Testbeds - XeonHaswell105.

3.7.3 Pre-Test Server Calibration

Number of SUT server sub-system runtime parameters have been identified as impacting data planeperformance tests. Calibrating those parameters is part of FD.io CSIT pre-test activities, and includesmeasuring and reporting following:
1. System level core jitter – measure duration of core interrupts by Linux in clock cycles and how ofteninterrupts happen. Using CPU core jitter tool106.
2. Memory bandwidth – measure bandwidth with Intel MLC tool107.
3. Memory latency – measure memory latency with Intel MLC tool.
4. Cache latency at all levels (L1, L2, and Last Level Cache) – measure cache latency with Intel MLCtool.

Measured values of listed parameters are especially important for repeatable zero packet loss throughputmeasurements across multiple system instances. Generally they come useful as a background data forcomparing data plane performance results across disparate servers.
Following sections include measured calibration data for Intel Xeon Haswell and Intel Xeon Skylaketestbeds.

3.7.4 Calibration Data - Haswell

Following sections include sample calibration data measured on t1-sut1 server running in one of the IntelXeon Haswell testbeds as specified in FD.io CSIT Testbeds - Xeon Haswell108.
Calibration data obtained from all other servers in Haswell testbeds shows the same or similar values.
104 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3105 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3106 https://git.fd.io/pma_tools/tree/jitter107 https://software.intel.com/en-us/articles/intelr-memory-latency-checker108 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

3.7. Test Environment 191

https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3
https://git.fd.io/pma_tools/tree/jitter
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Hsw_VIRL.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-36-generic root=UUID=5d2ecc97-245b-4e94-b0ae-c3548567de19 ro isolcpus=1-
→˓17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable␣
→˓intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
→˓cstate=1 hpet=disable tsc=reliable mce=off console=tty0 console=ttyS0,115200n8

Linux uname

$ uname -a
Linux t1-tg1 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64 x86_64 x86_64 GNU/
→˓Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 30
Linux Jitter testing program version 1.8
Iterations=30
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160024 172636 12612 160028 160024 172636 1573060608 3205463144 ␣
→˓1

160024 188236 28212 160028 160024 188236 958595072 3205500844 ␣
→˓2

160024 185676 25652 160028 160024 188236 344129536 3205485976 ␣
→˓3

160024 172608 12584 160024 160024 188236 4024631296 3205472740 ␣
→˓4

160024 179260 19236 160028 160024 188236 3410165760 3205502164 ␣
→˓5

160024 172432 12408 160024 160024 188236 2795700224 3205452036 ␣
→˓6

160024 178820 18796 160024 160024 188236 2181234688 3205455408 ␣
→˓7

160024 172512 12488 160028 160024 188236 1566769152 3205461528 ␣
→˓8

160024 172636 12612 160028 160024 188236 952303616 3205478820 ␣
→˓9

160024 173676 13652 160028 160024 188236 337838080 3205470412 ␣
→˓10

160024 178776 18752 160028 160024 188236 4018339840 3205481472 ␣
→˓11

160024 172788 12764 160028 160024 188236 3403874304 3205492336 ␣
→˓12 (continues on next page)

192 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
160024 174616 14592 160028 160024 188236 2789408768 3205474904 ␣

→˓13
160024 174440 14416 160028 160024 188236 2174943232 3205479448 ␣

→˓14
160024 178748 18724 160024 160024 188236 1560477696 3205482668 ␣

→˓15
160024 172588 12564 169404 160024 188236 946012160 3205510496 ␣

→˓16
160024 172636 12612 160024 160024 188236 331546624 3205472204 ␣

→˓17
160024 172480 12456 160024 160024 188236 4012048384 3205455864 ␣

→˓18
160024 172740 12716 160028 160024 188236 3397582848 3205464932 ␣

→˓19
160024 179200 19176 160028 160024 188236 2783117312 3205476012 ␣

→˓20
160024 172480 12456 160028 160024 188236 2168651776 3205465632 ␣

→˓21
160024 172728 12704 160024 160024 188236 1554186240 3205497204 ␣

→˓22
160024 172620 12596 160028 160024 188236 939720704 3205466972 ␣

→˓23
160024 172640 12616 160028 160024 188236 325255168 3205471216 ␣

→˓24
160024 172484 12460 160028 160024 188236 4005756928 3205467388 ␣

→˓25
160024 172636 12612 160028 160024 188236 3391291392 3205482748 ␣

→˓26
160024 179056 19032 160024 160024 188236 2776825856 3205467152 ␣

→˓27
160024 172672 12648 160024 160024 188236 2162360320 3205483268 ␣

→˓28
160024 176932 16908 160024 160024 188236 1547894784 3205488536 ␣

→˓29
160024 172452 12428 160028 160024 188236 933429248 3205440636 ␣

→˓30

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 57935.5 30265.2
1 30284.6 58409.9

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

(continues on next page)

3.7. Test Environment 193

CSIT REPORT, Release rls1901_3

(continued from previous page)
Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115762.2
3:1 Reads-Writes : 106242.2
2:1 Reads-Writes : 103031.8
1:1 Reads-Writes : 87943.7
Stream-triad like: 100048.4

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 115782.41
3:1 Reads-Writes : 105965.78
2:1 Reads-Writes : 103162.38
1:1 Reads-Writes : 88255.82
Stream-triad like: 105608.10

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 200.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 101.0 132.0
1 141.2 98.8

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 200.000MB
Each iteration took 227.2 core clocks (99.0 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth

(continues on next page)

194 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
Delay (ns) MB/sec
==========================
00000 294.08 115841.6
00002 294.27 115851.5
00008 293.67 115821.8
00015 278.92 115587.5
00050 246.80 113991.2
00100 206.86 104508.1
00200 123.72 72873.6
00300 113.35 52641.1
00400 108.89 41078.9
00500 108.11 33699.1
00700 106.19 24878.0
01000 104.75 17948.1
01300 103.72 14089.0
01700 102.95 11013.6
02500 102.25 7756.3
03500 101.81 5749.3
05000 101.46 4230.4
09000 101.05 2641.4
20000 100.77 1542.5

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 42.1
Local Socket L2->L2 HITM latency 47.0
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 108.0
1 106.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 107.7
1 106.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github109.
• CVE-2017-5753 [bounds check bypass] aka ‘Spectre Variant 1’
• CVE-2017-5715 [branch target injection] aka ‘Spectre Variant 2’
• CVE-2017-5754 [rogue data cache load] aka ‘Meltdown’ aka ‘Variant 3’
• CVE-2018-3640 [rogue system register read] aka ‘Variant 3a’
• CVE-2018-3639 [speculative store bypass] aka ‘Variant 4’
• CVE-2018-3615 [L1 terminal fault] aka ‘Foreshadow (SGX)’

109 https://github.com/speed47/spectre-meltdown-checker

3.7. Test Environment 195

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls1901_3

• CVE-2018-3620 [L1 terminal fault] aka ‘Foreshadow-NG (OS)’
• CVE-2018-3646 [L1 terminal fault] aka ‘Foreshadow-NG (VMM)’

$ sudo ./spectre-meltdown-checker.sh --no-color

Spectre and Meltdown mitigation detection tool v0.40

Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-36-generic #39-Ubuntu SMP Mon Sep 24 16:19:09 UTC 2018 x86_64
CPU is Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: YES (Intel SSBD)

* L1 data cache invalidation
* FLUSH_CMD MSR is available: YES
* CPU indicates L1D flush capability: YES (L1D flush feature bit)

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x3f family 0x6 stepping 0x2␣

→˓ucode 0x3d cpuid 0x306f2)
* CPU microcode is the latest known available version: YES (latest version is 0x3d dated 2018/04/

→˓20 according to builtin MCExtractor DB v84 - 2018/09/27)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass'
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka 'Spectre Variant 2, branch target injection'
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for kernel and firmware code)

(continues on next page)

196 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
* Kernel is compiled with IBPB support: YES

* IBPB enabled and active: YES
* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load'
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka 'Variant 3a, rogue system register read'
* CPU microcode mitigates the vulnerability: YES
> STATUS: NOT VULNERABLE (your CPU microcode mitigates the vulnerability)

CVE-2018-3639 aka 'Variant 4, speculative store bypass'
* Mitigated according to the /sys interface: YES (Mitigation: Speculative Store Bypass disabled via␣
→˓prctl and seccomp)
* Kernel supports speculation store bypass: YES (found in /proc/self/status)
> STATUS: NOT VULNERABLE (Mitigation: Speculative Store Bypass disabled via prctl and seccomp)

CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault'
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault'
* Mitigated according to the /sys interface: YES (Mitigation: PTE Inversion)
* Kernel supports PTE inversion: YES (found in kernel image)
* PTE inversion enabled and active: YES
> STATUS: NOT VULNERABLE (Mitigation: PTE Inversion)

CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault'
* Information from the /sys interface: VMX: conditional cache flushes, SMT disabled
* This system is a host running an hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: YES (found flush_l1d in /proc/cpuinfo)
* L1D flush enabled: YES (conditional flushes)
* Hardware-backed L1D flush supported: YES (performance impact of the mitigation will be greatly␣

→˓reduced)
* Hyper-Threading (SMT) is enabled: NO

> STATUS: NOT VULNERABLE (this system is not running an hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:OK CVE-2018-3639:OK CVE-
→˓2018-3615:OK CVE-2018-3620:OK CVE-2018-3646:OK

Need more detailed information about mitigation options? Use --explain
A false sense of security is worse than no security at all, see --disclaimer

3.7. Test Environment 197

CSIT REPORT, Release rls1901_3

3.7.5 Calibration Data - Skylake

Following sections include sample calibration data measured on s11-t31-sut1 server running in one ofthe Intel Xeon Skylake testbeds as specified in FD.io CSIT testbeds - Xeon Skylake, Arm, Atom110.
Calibration data obtained from all other servers in Skylake testbeds shows the same or similar values.
Linux cmdline

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-23-generic root=UUID=759ad671-ad46-441b-a75b-9f54e81837bb ro isolcpus=1-
→˓27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83,85-111 numa_
→˓balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

Linux uname

$ uname -a
Linux s5-t22-sut1 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64 x86_64 x86_
→˓64 GNU/Linux

System-level Core Jitter

$ sudo taskset -c 3 /home/testuser/pma_tools/jitter/jitter -i 20
Linux Jitter testing program version 1.8
Iterations=20
The pragram will execute a dummy function 80000 times
Display is updated every 20000 displayUpdate intervals
Timings are in CPU Core cycles
Inst_Min: Minimum Excution time during the display update interval(default is ~1 second)
Inst_Max: Maximum Excution time during the display update interval(default is ~1 second)
Inst_jitter: Jitter in the Excution time during rhe display update interval. This is the value of␣
→˓interest
last_Exec: The Excution time of last iteration just before the display update
Abs_Min: Absolute Minimum Excution time since the program started or statistics were reset
Abs_Max: Absolute Maximum Excution time since the program started or statistics were reset
tmp: Cumulative value calcualted by the dummy function
Interval: Time interval between the display updates in Core Cycles
Sample No: Sample number

Inst_Min Inst_Max Inst_jitter last_Exec Abs_min Abs_max tmp Interval ␣
→˓Sample No

160022 171330 11308 160022 160022 171330 2538733568 3204142750 ␣
→˓1

160022 167294 7272 160026 160022 171330 328335360 3203873548 ␣
→˓2

160022 167560 7538 160026 160022 171330 2412904448 3203878736 ␣
→˓3

160022 169000 8978 160024 160022 171330 202506240 3203864588 ␣
→˓4

160022 166572 6550 160026 160022 171330 2287075328 3203866224 ␣
→˓5

160022 167460 7438 160026 160022 171330 76677120 3203854632 ␣
→˓6

160022 168134 8112 160024 160022 171330 2161246208 3203874674 ␣
→˓7 (continues on next page)
110 https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3

198 Chapter 3. DPDK Performance

https://git.fd.io/csit/tree/docs/lab/Testbeds_Xeon_Skx_Arm_Atom.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
160022 169094 9072 160022 160022 171330 4245815296 3203878798 ␣

→˓8
160022 172460 12438 160024 160022 172460 2035417088 3204112010 ␣

→˓9
160022 167862 7840 160030 160022 172460 4119986176 3203856800 ␣

→˓10
160022 168398 8376 160024 160022 172460 1909587968 3203854192 ␣

→˓11
160022 167548 7526 160024 160022 172460 3994157056 3203847442 ␣

→˓12
160022 167562 7540 160026 160022 172460 1783758848 3203862936 ␣

→˓13
160022 167604 7582 160024 160022 172460 3868327936 3203859346 ␣

→˓14
160022 168262 8240 160024 160022 172460 1657929728 3203851120 ␣

→˓15
160022 169700 9678 160024 160022 172460 3742498816 3203877690 ␣

→˓16
160022 170476 10454 160026 160022 172460 1532100608 3204088480 ␣

→˓17
160022 167798 7776 160024 160022 172460 3616669696 3203862072 ␣

→˓18
160022 166540 6518 160024 160022 172460 1406271488 3203836904 ␣

→˓19
160022 167516 7494 160024 160022 172460 3490840576 3203848120 ␣

→˓20

Memory Bandwidth

$ sudo /home/testuser/mlc --bandwidth_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --bandwidth_matrix

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes
Measuring Memory Bandwidths between nodes within system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type

Numa node
Numa node 0 1

0 107947.7 50951.5
1 50834.6 108183.4

$ sudo /home/testuser/mlc --peak_injection_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --peak_injection_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Peak Injection Memory Bandwidths for the system
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 215733.9
3:1 Reads-Writes : 182141.9
2:1 Reads-Writes : 178615.7
1:1 Reads-Writes : 149911.3
Stream-triad like: 159533.6

3.7. Test Environment 199

CSIT REPORT, Release rls1901_3

$ sudo /home/testuser/mlc --max_bandwidth
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --max_bandwidth

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Maximum Memory Bandwidths for the system
Will take several minutes to complete as multiple injection rates will be tried to get the best␣
→˓bandwidth
Bandwidths are in MB/sec (1 MB/sec = 1,000,000 Bytes/sec)
Using all the threads from each core if Hyper-threading is enabled
Using traffic with the following read-write ratios
ALL Reads : 216875.73
3:1 Reads-Writes : 182615.14
2:1 Reads-Writes : 178745.67
1:1 Reads-Writes : 149485.27
Stream-triad like: 180057.87

Memory Latency

$ sudo /home/testuser/mlc --latency_matrix
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --latency_matrix

Using buffer size of 2000.000MB
Measuring idle latencies (in ns)...

Numa node
Numa node 0 1

0 81.4 131.1
1 131.1 81.3

$ sudo /home/testuser/mlc --idle_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --idle_latency

Using buffer size of 2000.000MB
Each iteration took 202.0 core clocks (80.8 ns)

$ sudo /home/testuser/mlc --loaded_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --loaded_latency

Using buffer size of 100.000MB/thread for reads and an additional 100.000MB/thread for writes

Measuring Loaded Latencies for the system
Using all the threads from each core if Hyper-threading is enabled
Using Read-only traffic type
Inject Latency Bandwidth
Delay (ns) MB/sec
==========================
00000 282.66 215712.8
00002 282.14 215757.4
00008 280.21 215868.1
00015 279.20 216313.2
00050 275.25 216643.0
00100 227.05 215075.0
00200 121.92 160242.9
00300 101.21 111587.4
00400 95.48 85019.7

(continues on next page)

200 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
00500 94.46 68717.3
00700 92.27 49742.2
01000 91.03 35264.8
01300 90.11 27396.3
01700 89.34 21178.7
02500 90.15 14672.8
03500 89.00 10715.7
05000 82.00 7788.2
09000 81.46 4684.0
20000 81.40 2541.9

L1/L2/LLC Latency

$ sudo /home/testuser/mlc --c2c_latency
Intel(R) Memory Latency Checker - v3.5
Command line parameters: --c2c_latency

Measuring cache-to-cache transfer latency (in ns)...
Local Socket L2->L2 HIT latency 53.7
Local Socket L2->L2 HITM latency 53.7
Remote Socket L2->L2 HITM latency (data address homed in writer socket)

Reader Numa Node
Writer Numa Node 0 1

0 - 113.9
1 113.9 -

Remote Socket L2->L2 HITM latency (data address homed in reader socket)
Reader Numa Node

Writer Numa Node 0 1
0 - 177.9
1 177.6 -

Spectre and Meltdown Checks

Following section displays the output of a running shell script to tell if system is vulnerable against theseveral “speculative execution” CVEs that were made public in 2018. Script is available on Spectre &Meltdown Checker Github111.
• CVE-2017-5753 [bounds check bypass] aka ‘Spectre Variant 1’
• CVE-2017-5715 [branch target injection] aka ‘Spectre Variant 2’
• CVE-2017-5754 [rogue data cache load] aka ‘Meltdown’ aka ‘Variant 3’
• CVE-2018-3640 [rogue system register read] aka ‘Variant 3a’
• CVE-2018-3639 [speculative store bypass] aka ‘Variant 4’
• CVE-2018-3615 [L1 terminal fault] aka ‘Foreshadow (SGX)’
• CVE-2018-3620 [L1 terminal fault] aka ‘Foreshadow-NG (OS)’
• CVE-2018-3646 [L1 terminal fault] aka ‘Foreshadow-NG (VMM)’

$ sudo ./spectre-meltdown-checker.sh --no-color

Spectre and Meltdown mitigation detection tool v0.40

Checking for vulnerabilities on current system
Kernel is Linux 4.15.0-23-generic #25-Ubuntu SMP Wed May 23 18:02:16 UTC 2018 x86_64

(continues on next page)
111 https://github.com/speed47/spectre-meltdown-checker

3.7. Test Environment 201

https://github.com/speed47/spectre-meltdown-checker
https://github.com/speed47/spectre-meltdown-checker

CSIT REPORT, Release rls1901_3

(continued from previous page)
CPU is Intel(R) Xeon(R) Platinum 8180 CPU @ 2.50GHz

Hardware check
* Hardware support (CPU microcode) for mitigation techniques

* Indirect Branch Restricted Speculation (IBRS)
* SPEC_CTRL MSR is available: YES
* CPU indicates IBRS capability: YES (SPEC_CTRL feature bit)

* Indirect Branch Prediction Barrier (IBPB)
* PRED_CMD MSR is available: YES
* CPU indicates IBPB capability: YES (SPEC_CTRL feature bit)

* Single Thread Indirect Branch Predictors (STIBP)
* SPEC_CTRL MSR is available: YES
* CPU indicates STIBP capability: YES (Intel STIBP feature bit)

* Speculative Store Bypass Disable (SSBD)
* CPU indicates SSBD capability: NO

* L1 data cache invalidation
* FLUSH_CMD MSR is available: NO
* CPU indicates L1D flush capability: NO

* Enhanced IBRS (IBRS_ALL)
* CPU indicates ARCH_CAPABILITIES MSR availability: NO
* ARCH_CAPABILITIES MSR advertises IBRS_ALL capability: NO

* CPU explicitly indicates not being vulnerable to Meltdown (RDCL_NO): NO
* CPU explicitly indicates not being vulnerable to Variant 4 (SSB_NO): NO
* CPU/Hypervisor indicates L1D flushing is not necessary on this system: NO
* Hypervisor indicates host CPU might be vulnerable to RSB underflow (RSBA): NO
* CPU supports Software Guard Extensions (SGX): NO
* CPU microcode is known to cause stability problems: NO (model 0x55 family 0x6 stepping 0x4␣

→˓ucode 0x2000043 cpuid 0x50654)
* CPU microcode is the latest known available version: NO (latest version is 0x200004d dated 2018/

→˓05/15 according to builtin MCExtractor DB v84 - 2018/09/27)
* CPU vulnerability to the speculative execution attack variants

* Vulnerable to CVE-2017-5753 (Spectre Variant 1, bounds check bypass): YES
* Vulnerable to CVE-2017-5715 (Spectre Variant 2, branch target injection): YES
* Vulnerable to CVE-2017-5754 (Variant 3, Meltdown, rogue data cache load): YES
* Vulnerable to CVE-2018-3640 (Variant 3a, rogue system register read): YES
* Vulnerable to CVE-2018-3639 (Variant 4, speculative store bypass): YES
* Vulnerable to CVE-2018-3615 (Foreshadow (SGX), L1 terminal fault): NO
* Vulnerable to CVE-2018-3620 (Foreshadow-NG (OS), L1 terminal fault): YES
* Vulnerable to CVE-2018-3646 (Foreshadow-NG (VMM), L1 terminal fault): YES

CVE-2017-5753 aka 'Spectre Variant 1, bounds check bypass'
* Mitigated according to the /sys interface: YES (Mitigation: __user pointer sanitization)
* Kernel has array_index_mask_nospec: YES (1 occurrence(s) found of x86 64 bits array_index_mask_
→˓nospec())
* Kernel has the Red Hat/Ubuntu patch: NO
* Kernel has mask_nospec64 (arm64): NO
> STATUS: NOT VULNERABLE (Mitigation: __user pointer sanitization)

CVE-2017-5715 aka 'Spectre Variant 2, branch target injection'
* Mitigated according to the /sys interface: YES (Mitigation: Full generic retpoline, IBPB, IBRS_FW)
* Mitigation 1

* Kernel is compiled with IBRS support: YES
* IBRS enabled and active: YES (for kernel and firmware code)

* Kernel is compiled with IBPB support: YES
* IBPB enabled and active: YES

* Mitigation 2
* Kernel has branch predictor hardening (arm): NO
* Kernel compiled with retpoline option: YES

* Kernel compiled with a retpoline-aware compiler: YES (kernel reports full retpoline␣
→˓compilation)
* Kernel supports RSB filling: YES

(continues on next page)

202 Chapter 3. DPDK Performance

CSIT REPORT, Release rls1901_3

(continued from previous page)
> STATUS: NOT VULNERABLE (Full retpoline + IBPB are mitigating the vulnerability)

CVE-2017-5754 aka 'Variant 3, Meltdown, rogue data cache load'
* Mitigated according to the /sys interface: YES (Mitigation: PTI)
* Kernel supports Page Table Isolation (PTI): YES

* PTI enabled and active: YES
* Reduced performance impact of PTI: YES (CPU supports INVPCID, performance impact of PTI will be␣

→˓greatly reduced)
* Running as a Xen PV DomU: NO
> STATUS: NOT VULNERABLE (Mitigation: PTI)

CVE-2018-3640 aka 'Variant 3a, rogue system register read'
* CPU microcode mitigates the vulnerability: NO
> STATUS: VULNERABLE (an up-to-date CPU microcode is needed to mitigate this vulnerability)

CVE-2018-3639 aka 'Variant 4, speculative store bypass'
* Mitigated according to the /sys interface: NO (Vulnerable)
* Kernel supports speculation store bypass: YES (found in /proc/self/status)
> STATUS: VULNERABLE (Your CPU doesn't support SSBD)

CVE-2018-3615 aka 'Foreshadow (SGX), L1 terminal fault'
* CPU microcode mitigates the vulnerability: N/A
> STATUS: NOT VULNERABLE (your CPU vendor reported your CPU model as not vulnerable)

CVE-2018-3620 aka 'Foreshadow-NG (OS), L1 terminal fault'
* Kernel supports PTE inversion: NO
* PTE inversion enabled and active: UNKNOWN (sysfs interface not available)
> STATUS: VULNERABLE (Your kernel doesn't support PTE inversion, update it)

CVE-2018-3646 aka 'Foreshadow-NG (VMM), L1 terminal fault'
* This system is a host running an hypervisor: NO
* Mitigation 1 (KVM)

* EPT is disabled: NO
* Mitigation 2

* L1D flush is supported by kernel: NO
* L1D flush enabled: UNKNOWN (can't find or read /sys/devices/system/cpu/vulnerabilities/l1tf)
* Hardware-backed L1D flush supported: NO (flush will be done in software, this is slower)
* Hyper-Threading (SMT) is enabled: YES

> STATUS: NOT VULNERABLE (this system is not running an hypervisor)

> SUMMARY: CVE-2017-5753:OK CVE-2017-5715:OK CVE-2017-5754:OK CVE-2018-3640:KO CVE-2018-3639:KO CVE-
→˓2018-3615:OK CVE-2018-3620:KO CVE-2018-3646:OK

Need more detailed information about mitigation options? Use --explain
A false sense of security is worse than no security at all, see --disclaimer

3.7.6 SUT Settings - Linux

System provisioning is done by combination of PXE boot unattented install and Ansible112 described inCSIT Testbed Setup113.
Below a subset of the running configuration:

1. Xeon Haswell - Ubuntu 18.04.1 LTS
$ lsb_release -a
No LSB modules are available.

(continues on next page)
112 https://www.ansible.com113 https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1901_3

3.7. Test Environment 203

https://www.ansible.com
https://git.fd.io/csit/tree/resources/tools/testbed-setup/README.md?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
Distributor ID: Ubuntu
Description: Ubuntu 18.04.1 LTS
Release: 18.04
Codename: bionic

2. Xeon Skylake - Ubuntu 18.04 LTS
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 18.04 LTS
Release: 18.04
Codename: bionic

Linux Boot Parameters

• isolcpus=<cpu number>-<cpu number> used for all cpu cores apart from first core of each socketused for running VPP worker threads and Qemu/LXC processes https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• intel_pstate=disable - [X86] Do not enable intel_pstate as the default scaling driver for the sup-ported processors. Intel P-State driver decide what P-state (CPU core power state) to use basedon requesting policy from the cpufreq core. [X86 - Either 32-bit or 64-bit x86] https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
• nohz_full=<cpu number>-<cpu number> - [KNL,BOOT] In kernels built with CON-FIG_NO_HZ_FULL=y, set the specified list of CPUs whose tick will be stopped wheneverpossible. The boot CPU will be forced outside the range to maintain the timekeeping. The CPUsin this range must also be included in the rcu_nocbs= set. Specifies the adaptive-ticks CPU cores,causing kernel to avoid sending scheduling-clock interrupts to listed cores as long as they have asingle runnable task. [KNL - Is a kernel start-up parameter, SMP - The kernel is an SMP kernel].https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
• rcu_nocbs - [KNL] In kernels built with CONFIG_RCU_NOCB_CPU=y, set the specified list of CPUsto be no-callback CPUs, that never queue RCU callbacks (read-copy update). https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
• numa_balancing=disable - [KNL,X86] Disable automatic NUMA balancing.
• intel_iommu=enable - [DMAR] Enable Intel IOMMU driver (DMAR) option.
• iommu=on, iommu=pt - [x86, IA-64] Disable IOMMU bypass, using IOMMU for PCI devices.
• nmi_watchdog=0 - [KNL,BUGS=X86] Debugging features for SMP kernels. Turn hardlockup detec-tor in nmi_watchdog off.
• nosoftlockup - [KNL] Disable the soft-lockup detector.
• tsc=reliable - Disable clocksource stability checks for TSC. [x86] reliable: mark tsc clocksource asreliable, this disables clocksource verification at runtime, as well as the stability checks done atbootup. Used to enable high-resolution timer mode on older hardware, and in virtualized environ-ment.
• hpet=disable - [X86-32,HPET] Disable HPET and use PIT instead.

Hugepages Configuration

Huge pages are namaged via sysctl configuration located in /etc/sysctl.d/90-csit.conf on each testbed.Default huge page size is 2M. The exact amount of huge pages depends on testbed. All the values aredefined in Ansible inventory - hosts files.

204 Chapter 3. DPDK Performance

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/timers/NO_HZ.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

CSIT REPORT, Release rls1901_3

Applied Boot Cmdline

1. Xeon Haswell - Ubuntu 18.04.1 LTS
$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-36-generic root=UUID=5d2ecc97-245b-4e94-b0ae-c3548567de19 ro isolcpus=1-
→˓17,19-35 nohz_full=1-17,19-35 rcu_nocbs=1-17,19-35 numa_balancing=disable intel_pstate=disable␣
→˓intel_iommu=on iommu=pt nmi_watchdog=0 audit=0 nosoftlockup processor.max_cstate=1 intel_idle.max_
→˓cstate=1 hpet=disable tsc=reliable mce=off console=tty0 console=ttyS0,115200n8

2. Xeon Skylake - Ubuntu 18.04 LTS
$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-4.15.0-23-generic root=UUID=3fa246fd-1b80-4361-bb90-f339a6bbed51 ro isolcpus=1-
→˓27,29-55,57-83,85-111 nohz_full=1-27,29-55,57-83,85-111 rcu_nocbs=1-27,29-55,57-83,85-111 numa_
→˓balancing=disable intel_pstate=disable intel_iommu=on iommu=pt nmi_watchdog=0 audit=0␣
→˓nosoftlockup processor.max_cstate=1 intel_idle.max_cstate=1 hpet=disable tsc=reliable mce=off␣
→˓console=tty0 console=ttyS0,115200n8

Host Writeback Affinity

Writebacks are pinned to core 0. The same configuration is applied in host Linux and guest VM.
$ echo 1 | sudo tee /sys/bus/workqueue/devices/writeback/cpumask

3.7.7 DUT Settings - DPDK

DPDK Version

DPDK 18.11
DPDK Compile Parameters

make install T=x86_64-native-linuxapp-gcc -j

Testpmd Startup Configuration

Testpmd startup configuration changes per test case with different settings for $$CORES, $$RXQ andmax-pkt-len parameter if test is sending jumbo frames. Startup command template:
testpmd -c $$CORE_MASK -n 4 -- --numa --nb-ports=2 --portmask=0x3 --nb-cores=$$CORES --max-pkt-
→˓len=9000 --txqflags=0 --forward-mode=io --rxq=$$RXQ --txq=$$TXQ --burst=64 --rxd=1024 --txd=1024 -
→˓-disable-link-check --auto-start

L3FWD Startup Configuration

L3FWD startup configuration changes per test case with different settings for $$CORES and enable-jumbo parameter if test is sending jumbo frames. Startup command template:
l3fwd -l $$CORE_LIST -n 4 -- -P -L -p 0x3 --config='${port_config}' --enable-jumbo --max-pkt-
→˓len=9000 --eth-dest=0,${adj_mac0} --eth-dest=1,${adj_mac1} --parse-ptype

3.7. Test Environment 205

CSIT REPORT, Release rls1901_3

3.7.8 TG Settings - TRex

TG Version

TRex v2.35
DPDK Version

DPDK v17.11
TG Build Script Used

TRex intallation114

TG Startup Configuration

$ cat /etc/trex_cfg.yaml
- port_limit : 2

version : 2
interfaces : ["0000:0d:00.0","0000:0d:00.1"]
port_info :

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]

- dest_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf4]
src_mac : [0x3c,0xfd,0xfe,0x9c,0xee,0xf5]

TG Startup Command

$ sh -c 'cd <t-rex-install-dir>/scripts/ && sudo nohup ./t-rex-64 -i -c 7 --iom 0 > /tmp/trex.log 2>
→˓&1 &'> /dev/null

TG API Driver

TRex driver115

3.8 Documentation

CSIT DPDK Performance Tests Documentation116 contains detailed functional description and input pa-rameters for each test case.

114 https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3115 https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1901_3116 https://docs.fd.io/csit/rls1901_3/doc/tests.dpdk.perf.html

206 Chapter 3. DPDK Performance

https://git.fd.io/csit/tree/resources/tools/trex/trex_installer.sh?h=rls1901_3
https://git.fd.io/csit/tree/resources/tools/trex/trex_stateless_profile.py?h=rls1901_3
https://docs.fd.io/csit/rls1901_3/doc/tests.dpdk.perf.html

CHAPTER4

VPP Device

4.1 Overview

4.1.1 Virtual Topologies

CSIT VPP Device tests are executed in Physical containerized topologies created on demand using set ofscripts hosted and developed under CSIT repository. It runs on physical baremetal servers hosted by LFFD.io project. Based on the packet path thru SUT Containers, three distinct logical topology types areused for VPP DUT data plane testing:
1. vfNIC-to-vfNIC switching topologies.
2. vfNIC-to-vhost-user switching topologies.
3. vfNIC-to-memif switching topologies.

vfNIC-to-vfNIC Switching

The simplest physical topology for software data plane application like VPP is vfNIC-to-vfNIC switching.Tested virtual topologies for 2-Node testbeds are shown in figures below.

207

CSIT REPORT, Release rls1901_3

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

…

TG

NIC x710

cSUT[n.1]

cTG[n.2]

DUT

TG

External
cable

VF[2] VF[2n]

VFs mapped to VLAN IDs

VF[1] VF[2n-1]

1

2

2n

2n-1

VF[2] VF[2n]

VF[1] VF[2n-1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

…

SUT1 isDocker Container (runningUbuntu, depending on the test suite), TG is a TrafficGenerator (runningUbuntu Container). SUTs run VPP SWapplication in Linux user-mode as aDevice Under Test (DUT) withinthe container. TG runs Scapy SWapplication as a packet TrafficGenerator. Network connectivity betweenSUTs and to TG is provided using virtual function of physical NICs.
Virtual topologies are created on-demand whenever a verification job is started (e.g. triggered by thegerrit patch submission) and destroyed upon completion of all functional tests. Each node is a containerrunning on physical server. During the test execution, all nodes are reachable thru the Management (notshown above for clarity).
vfNIC-to-vhost-user Switching

vfNIC-to-vhost-user switching topology test cases require VPP DUT to communicate with Virtual Ma-chine (VM) over Vhost-user virtual interfaces. VM is created on SUT1 for the duration of these particulartest cases only. Virtual test topology with VM is shown in the figure below.

208 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies: vfNIC-to-vhost-user switching

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

TG

NIC x710

External
cable

VF[2]

VFs mapped to VLAN IDs

VF[1]

1

2

2n

2n-1

VF[2]

VF[1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

Nested/VM[1]

Fwd
Cxt[0]

Fwd
Cxt[1]

VNF[1]

vfNIC-to-memif Switching

vfNIC-to-memif switching topology test cases require VPP DUT to communicate with another DockerContainer over memif interfaces. Container is created for the duration of these particular test cases onlyand it is running the same VPP version as running on DUT. Virtual test topology with Memif is shown inthe figure below.

4.1. Overview 209

CSIT REPORT, Release rls1901_3

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies: vfNIC-to-memif switching

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

TG

NIC x710

DUT1_CNF1[1]

DUT1_CNF1

External
cable

VF[2]

VFs mapped to VLAN IDs

VF[1]

1

2

2n

2n-1

VF[2]

VF[1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

4.1.2 Functional Tests Coverage

CSIT-1901.3 includes following VPP functionality tested in VPP Device environment:
Functionality DescriptionIPv4 IPv4 routing, ICMPv4.IPv6 IPv4 routing, ICMPv6.L2BD L2 Bridge-Domain switching for untagged Ethernet.L2XC L2 Cross-Connect switching for untagged Ethernet.Vhost-user Interface Baseline VPP vhost-user interface tests.Memif Interface Baseline VPP memif interface tests.

4.1.3 Tests Naming

CSIT-1901.3 follows a common structured naming convention for all performance and system functionaltests, introduced in CSIT-17.01.
The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-vention is provided on Test Naming (page 239).

4.2 Release Notes

4.2.1 Changes in CSIT-1901.3

1. TEST FRAMEWORK

210 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

• VM and “nested” container support: Framework has been extended to allow to run VirtualMachine (VM) on SUT1 and to start another Docker Container from SUT1.
2. NEW TESTS

• L2BD and L2XC: L2 Cross-Connect switching and L2 Bridge-Domain switching betweenvfNICs for untagged ethernet.
• VM_Vhost: VPPDUT is configuredwith IPv4/IPv6 routing or L2 cross-connect/bridge-domainswitching between vfNICs and Vhost-user interfaces. VM - Qemu Guest is connected to VPPvia Vhost-user interfaces. Guest is configured with linux bridge interconnecting vhost-userinterfaces.
• Container_Memif: VPPDUT is configuredwith IPv4/IPv6 routing or L2 cross-connect/bridge-domain switching between vfNICs and Memif interfaces. Container is connected to VPP viaMemif interface. Container is running the same VPP version as running on DUT.

4.2.2 Known Issues

List of known issues in CSIT-1901.3 for VPP functional tests in VPP Device:
JiraID Issue Description1

4.3 Integration Tests

4.3.1 Abstract

FD.io VPP software data plane technology has become very popular across a wide range of VPP eco-system use cases, putting higher pressure on continuous verification of VPP software quality.
This document describes a proposal for design and implementation of extended continuous VPP test-ing by extending existing test environments. Furthermore it describes and summarizes implementationdetails of Integration and System tests platform 1-Node VPP_Device. It aims to provide a complete end-to-end view of 1-Node VPP_Device environment in order to improve extendability and maintenance, underthe guideline of VPP core team.
The keywords “MUST”, “MUSTNOT”, “REQUIRED”, “SHALL”, “SHALLNOT”, “SHOULD”, “SHOULDNOT”,“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in RFC
8174117.
117 https://tools.ietf.org/html/rfc8174.html

4.3. Integration Tests 211

https://tools.ietf.org/html/rfc8174.html
https://tools.ietf.org/html/rfc8174.html

CSIT REPORT, Release rls1901_3

4.3.2 Overview

Jenkins

Jenkins
slave

TG

SUT

CSIT
shim

on
every
host

Nomad1

SSH to known port

SSH or
docker
exec

Unique
network

Nomad1
bridge

4.3.3 Physical Testbeds

All FD.io CSIT vpp-device tests are executed on physical testbeds built with bare-metal servers hostedby LF FD.io project. Two 1-node testbed topologies are used:
• 2-Container Topology: Consisting of one Docker container acting as SUT (System Under Test) andone Docker container as TG (Traffic Generator), both connected in ring topology via physical NICcross-connecting.

Current FD.io production testbeds are built with servers based on one processor generation of IntelXeons: Skylake (Platinum 8180). Testbeds built with servers based on Arm processors are in the pro-cess of being added to FD.io production.
Following section describe existing production 1n-skx testbed.
1-Node Xeon Skylake (1n-skx)

1n-skx testbed is based on single SuperMicro SYS-7049GP-TRT server equipped with two Intel XeonSkylake Platinum 8180 2.5 GHz 28 core processors. Physical testbed topology is depicted in a figurebelow.

212 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

Ethernet Wire Encapsulation: dot1q

2-Node Containerized Topologies

Host Server

cSUT[1.1]

cTG[1.2]
Linux

Kernel

Linux-Host

User-Space

DUT

…

TG

NIC x710

cSUT[n.1]

cTG[n.2]

DUT

TG

External
cable

VF[2] VF[2n]

VFs mapped to VLAN IDs

VF[1] VF[2n-1]

1

2

2n

2n-1

VF[2] VF[2n]

VF[1] VF[2n-1]

1

2

2n

2n-1

TenGigEth-0 TenGigEth-1

External
cable

TenGigEth-2 TenGigEth-3

…

Server is populated with the following NIC models:
1. NIC-1: x710-da4 4p10GE Intel.
2. NIC-2: x710-da4 4p10GE Intel.

All Intel Xeon Skylake servers run with Intel Hyper-Threading enabled, doubling the number of logicalcores exposed to Linux, with 56 logical cores and 28 physical cores per processor socket.
NIC interfaces are shared using Linux vfio_pci and VPP VF drivers:

• DPDK VF driver,
• Fortville AVF driver.

Provided Intel x710-da4 4p10GE NICs support 32 VFs per interface, 128 per NIC.
Complete 1n-skx testbeds specification is available on CSIT LF Testbeds118 wiki page.
Total of two 1n-skx testbeds are in operation in FD.io labs.
1-Node Virtualbox (1n-vbox)

1n-skx testbed can run in single VirtualBox VM machine. This solution replaces the previously usedVagrant environment based on 3 VMs.
VirtualBox VMMAY be created by Vagrant and MUST have additional 4 virtio NICs each pair attached toseparate private networks to simulate back-to-back connections. It SHOULD be 82545EM device model(otherwise can be changed in boostrap scripts). Example of Vagrant configuration:
Vagrant.configure(2) do |c|

c.vm.network "private_network", type: "dhcp", auto_config: false,

(continues on next page)
118 https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

4.3. Integration Tests 213

https://wiki.fd.io/view/CSIT/Testbeds:_Xeon_Skx,_Arm,_Atom.

CSIT REPORT, Release rls1901_3

(continued from previous page)
virtualbox__intnet: "port1", nic_type: "82545EM"

c.vm.network "private_network", type: "dhcp", auto_config: false,
virtualbox__intnet: "port2", nic_type: "82545EM"

c.vm.provider :virtualbox do |v|
v.customize ["modifyvm", :id, "--nicpromisc2", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc3", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc4", "allow-all"]
v.customize ["modifyvm", :id, "--nicpromisc5", "allow-all"]

Vagrant VM is populated with the following NIC models:
1. NIC-1: 82545EM Intel.
2. NIC-2: 82545EM Intel.
3. NIC-3: 82545EM Intel.
4. NIC-4: 82545EM Intel.

4.3.4 Containers

It was agreed on TWS (Technical Work Stream) call to continue with Ubuntu 18.04 LTS as a baselinesystem with OPTIONAL extend to Centos 7 and SuSE per demand [TWSLink] (page 283).
All DCR (Docker container) images are REQUIRED to be hosted on Docker registry available from LFnetwork, publicly available and trackable. For backup, tracking and contributing purposes all Dockerfiles(including files needed for building container) MUST be available and stored in [fdiocsitgerrit] (page 283)repository under appropriate folders. This allows the peer review process to be done for every change ofinfrastructure related to scope of this document. Currently only csit-shim-dcr and csit-sut-dcr containerswill be stored and maintained under CSIT repository by CSIT contributors.
At the time of designing solution described in this document the interconnection between [dockerhub](page 283) and [fdiocsitgerrit] (page 283) for automated build purposes and image hosting cannot be es-tablished with the trust and respectful to security of FD.io project. Unless adressed, DCR images will beplaced in custom registry service [fdioregistry] (page 283). Automated Jenkins jobs will be created in alignof long term solution for container lifecycle and ability to build new version of docker images.
In parallel, the effort is started to find the outsourced Docker registry service.
Versioning

As of initial version of vpp-device, we do have only single latest version of Docker image hosted on
[dockerhub] (page 283). This will be addressed as further improvement with proper semantic versioning.
jenkins-slave-dcr

This DCR acts as the Jenkins slave (known also as jenkins minion). It can connect over SSH protocolto TCP port 6022 of csit-shim-dcr and executes non-interactive reservation script. Nomad is responsi-ble for scheduling this container execution onto specific 1-Node VPP_Device testbed. It executes CSITenvironment including CSIT framework.
All software dependencies including VPP/DPDK that are not present in csit-sut-dcr container imageand/or needs to be compiled prior running on csit-sut-dcr SHOULD be compiled in this container.

• Container Image Location: Docker image at snergster/vpp-ubuntu18.
• Container Definition: Docker file specified at [JenkinsSlaveDcrFile] (page 283).
• Initializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp.

214 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

csit-shim-dcr

This DCR acts as an intermediate layer running script responsible for orchestrating topologies under testand reservation. Responsible for managing VF resources and allocation to DUT (Device Under Test), TG(Traffic Generator) containers. ThisMUST to be done on csit-shim-dcr. This image also acts as the genericreservation mechanics arbiter to make sure that only Y number of simulations are spawned on any givenHW node.
• Container Image Location: Docker image at snergster/csit-shim.
• Container Definition: Docker file specified at [CsitShimDcrFile] (page 283).
• Initializing: Container is initialized from within Consul by HashiCorp and Nomad by HashiCorp. Re-quired docker parameters, to be able to run nested containers with VF reservation system are:privileged, net=host, pid=host.
• Connectivity: Over SSH only, using <host>:6022 format. Currently using root user account as pri-mary. From the jenkins slave it will be able to connect via env variable, since the jenkins slave doesn’tactually know what host its running on.

ssh -p 6022 root@10.30.51.node

csit-sut-dcr

This DCR acts as an SUT (System Under Test). Any DUT or TG application is installed there. It is REC-OMMENDED to install DUT and all DUT dependencies via commands rpm -ihv on RedHat based OS or
dpkg -i on Debian based OS.
Container is designed to be a very lightweight Docker image that only installs packages and executebinaries (previously built or downloaded on jenkins-slave-dcr) and contains libraries necessary to runCSIT framework including those required by DUT/TG.

• Container Image Location: Docker image at snergster/csit-sut.
• Container Definition: Docker file specified at [CsitSutDcrFile] (page 283).
• Initializing:

docker run
Run the container in the background and print the new container ID.
--detach=true
Give extended privileges to this container. A "privileged" container is
given access to all devices and able to run nested containers.
--privileged
Publish all exposed ports to random ports on the host interfaces.
--publish-all
Automatically remove the container when it exits.
--rm
Size of /dev/shm.
--shm-size 512M
Override access to PCI bus by attaching a filesystem mount to the
container.
--mount type=tmpfs,destination=/sys/bus/pci/devices
Mount vfio to be able to bind to see binded interfaces. We cannot use
--device=/dev/vfio as this does not see newly binded interfaces.
--volume /dev/vfio:/dev/vfio
Mount nested_vm image to be able to run VM tests.
--volume /var/lib/vm/vhost-nested.img:/var/lib/vm/vhost-nested.img
Mount docker.sock to be able to use docker deamon of the host.
--volume /var/run/docker.sock:/var/run/docker.sock
Image of csit-sut-dcr
snergster/csit-vpp-device-test:latest

4.3. Integration Tests 215

CSIT REPORT, Release rls1901_3

Container name is catenated from csit- prefix and uuid generated uniquely for each container in-stance.
• Connectivity: Over SSH only, using <host>[:<port>] format. Currently using root user account asprimary.

ssh -p <port> root@10.30.51.<node>

Container required to run as --privileged due to ability to create nested containers and have fullread/write access to sysfs (for bind/unbind). Docker automatically pick free network port (--publish-all)for ability to connect over ssh. To be able to limit access to PCI bus, container is creating tmpfs mounttype in PCI bus tree. CSIT reservation script is dynamically linking only PCI devices (NIC cards) that arereserved for particular container. This way it is not colliding with other containers. To make vfio work,access to /dev/vfio must be granted.

4.3.5 Environment initialization

All 1-node servers are to be managed and provisioned via the [ansiblelink] (page 283) set of playbookswith vpp-device role. Full playbooks can be found under [fdiocsitansible] (page 283) directory. This waywe are able to track all configuration changes of physical servers in gerrit (in structured yaml format) aswell as we are able to extend vpp-device to additional servers with less effort or re-stage servers in caseof failure.
SR-IOV VF initialization is done via systemd service during host system boot up. Service with name csit-
initialize-vfs.service is created under systemd system context (/etc/systemd/system/). By default serviceis calling /usr/local/bin/csit-initialize-vfs.sh with single parameter:

• start: Creates maximum number of virtual functions (VFs) (detected from sriov_totalvfs) for eachwhitelisted PCI device.
• stop: Removes all VFs for all whitelisted PCI device.

Service is considered active even when all of its processes exited successfully. Stopping service will au-tomatically remove VFs.
[Unit]
Description=CSIT Initialize SR-IOV VFs
After=network.target

[Service]
Type=one-shot
RemainAfterExit=True
ExecStart=/usr/local/bin/csit-initialize-vfs.sh start
ExecStop=/usr/local/bin/csit-initialize-vfs.sh stop

[Install]
WantedBy=default.target

Script is driven by two array variables pci_blacklist/pci_whitelist. TheyMUST store all PCI addressesin <domain>:<bus>:<device>.<func> format, where:
• pci_blacklist: PCI addresses to be skipped from VFs initialization (usefull for e.g. excluding manage-ment network interfaces).
• pci_whitelist: PCI addresses to be included for VFs initialization.

4.3.6 VF reservation

During topology initialization phase of script, mutex is used to avoidmultiple instances of script to interactwith each other during resources allocation. Mutal exclusion ensure that no two distinct instances ofscript will get same resource list.

216 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

Reservation function reads the list of all available virtual function network devices in system:
net_path="/sys/bus/pci/devices/*/net/*"

for netdev in \
$(find ${net_path} -type d -name . -o -prune -exec basename '{}' ';');

do
if grep -q "${pci_id}" "/sys/class/net/${netdev}/device/device"; then

found VF
fi

done

Where ${pci_id} is ID of white-listed VF PCI ID. For more information please see [pciids] (page 283).This act as security constraint to prevent taking other unwanted interfaces. The output list of all VFnetwork devices is split into two lists for TG and SUT side of connection. First two items from each TGor SUT network devices list are taken to expose directly to namespace of container. This can be done viacommands:
$ ip link set ${netdev} netns ${DCR_CPIDS[tg]}
$ ip link set ${netdev} netns ${DCR_CPIDS[dut1]}

In this stage also symbolic links to PCI devices under sysfs bus directory tree are created in running con-tainers. Once VF devices are assigned to container namespace and PCI deivces are linked to runningcontainers and mutex is exited. Selected VF network device automatically dissapear from parent con-tainer namespace, so another instance of script will not find device under that namespace.
Once Docker container exits, network device is returned back into parent namespace and can be reused.

4.3.7 Network traffic isolation - Intel i40evf

In a virtualized environment, on Intel(R) Server Adapters that support SR-IOV, the virtual function (VF)may be subject to malicious behavior. Software- generated layer two frames, like IEEE 802.3x (link flowcontrol), IEEE 802.1Qbb (priority based flow-control), and others of this type, are not expected and canthrottle traffic between the host and the virtual switch, reducing performance. To resolve this issue, con-figure all SR-IOV enabled ports for VLAN tagging. This configuration allows unexpected, and potentiallymalicious, frames to be dropped. [inteli40e] (page 283)
To configure VLAN tagging for the ports on an SR-IOV enabled adapter, use the following command. TheVLAN configuration SHOULD be done before the VF driver is loaded or the VM is booted. [inteli40e](page 283)
$ ip link set dev <PF netdev id> vf <id> vlan <vlan id>

For example, the following instructions will configure PF eth0 and the first VF on VLAN 10.
$ ip link set dev eth0 vf 0 vlan 10

VLAN Tag Packet Steering allows to send all packets with a specific VLAN tag to a particular SR-IOVvirtual function (VF). Further, this feature allows to designate a particular VF as trusted, and allows thattrusted VF to request selective promiscuous mode on the Physical Function (PF). [inteli40e] (page 283)
To set a VF as trusted or untrusted, enter the following command in the Hypervisor:
$ ip link set dev eth0 vf 1 trust [on|off]

Once the VF is designated as trusted, use the following commands in the VM to set the VF to promiscuousmode. [inteli40e] (page 283)
• For promiscuous all:

$ ip link set eth2 promisc on

4.3. Integration Tests 217

CSIT REPORT, Release rls1901_3

• For promiscuous Multicast:
$ ip link set eth2 allmulti on

Note: By default, the ethtool priv-flag vf-true-promisc-support is set to off, meaning that promiscuousmode for the VF will be limited. To set the promiscuous mode for the VF to true promiscuous and allowthe VF to see all ingress traffic, use the following command. $ ethtool set-priv-flags p261p1 vf-true-promisc-support on The vf-true-promisc-support priv-flag does not enable promiscuous mode; rather, itdesignates which type of promiscuous mode (limited or true) you will get when you enable promiscuousmode using the ip link commands above. Note that this is a global setting that affects the entire device.However,the vf-true-promisc-support priv-flag is only exposed to the first PF of the device. The PFremains in limited promiscuous mode (unless it is inMFPmode) regardless of the vf-true-promisc-supportsetting. [inteli40e] (page 283)
Service described earlier csit-initialize-vfs.service is responsible for assigning 802.1Q vlan tagging to eachvitual function via physical function from list of white-listed PCI addresses by following (simplified) code.
pci_idx=0
for pci_addr in ${pci_whitelist[@]}; do

pci_path="/sys/bus/pci/devices/${pci_addr}"
pf=$(basename "${pci_path}"/net/*)
for vf in $(seq "${sriov_totalvfs}"); do

PCI address index in array (pairing siblings).
vlan_pf_idx=$((pci_idx % (${#pci_whitelist[@]} / 2)))
802.1Q base offset.
vlan_bs_off=1100
802.1Q PF PCI address offset.
vlan_pf_off=$((vlan_pf_idx * 100 + vlan_bs_off))
802.1Q VF PCI address offset.
vlan_vf_off=$((vlan_pf_off + vf - 1))
VLAN string.
vlan_str="vlan ${vlan_vf_off}"
MAC string.
mac5="$(printf '%x' ${pci_idx})"
mac6="$(printf '%x' $((vf - 1)))"
mac_str="mac ba:dc:0f:fe:${mac5}:${mac6}"
Set 802.1Q VLAN id and MAC address
ip link set ${pf} vf $((vf - 1)) ${mac_str} ${vlan_str}
ip link set ${pf} vf $((vf - 1)) trust on
ip link set ${pf} vf $((vf - 1)) spoof off

done
pci_idx=$((pci_idx + 1))

done

Assignment starts at VLAN 1100 and incrementing by 1 for each VF and by 100 for each white-listed PCIaddress up to the middle of the PCI list. Second half of the lists is assumed to be directly (cable) pairedsiblings and assigned with same 802.1Q VLANs as its siblings.

4.3.8 Open tasks

Security

Note: Switch to non-privileged containers: As of now all three container flavors are using privilegedcontainers to make it working. Explore options to switch containers to non-privileged with explicit ratherimplicit privileges.

218 Chapter 4. VPP Device

CSIT REPORT, Release rls1901_3

Note: Switch to testuser account intead of root.

Maintainability

Note: Docker image distribution: Create jenkins jobs with full pipiline of CI/CD for CSIT Docker images.

Stability

Note: Implement queueing mechanism: Currently there is no mechanics that would place starving jobsin queue in case of no resources available.

Note: Replace reservation script with Docker network plugin written in GOLANG/SH/Python - platformindependent.

4.3.9 Links

4.4 Documentation

CSIT VPP Device Tests Documentation129 contains detailed functional description and input parametersfor each test case.

129 https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.device.html

4.4. Documentation 219

https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.device.html

CHAPTER5

VPP Functional

5.1 Overview

5.1.1 Virtual Topologies

CSIT VPP functional tests are executed in VM-based virtual topologies created on demand using VIRL(Virtual Internet Routing Lab) simulation platform contributed by Cisco. VIRL runs on physical baremetalservers hosted by LF FD.io project. Based on the packet path thru SUT VMs, two distinct logical topologytypes are used for VPP DUT data plane testing:
1. vNIC-to-vNIC switching topologies.
2. Nested-VM service switching topologies.

vNIC-to-vNIC Switching

The simplest virtual topology for software data plane application like VPP is vNIC-to-vNIC switching.Tested virtual topologies for 2-Node and 3-Node testbeds are shown in figures below.

220

CSIT REPORT, Release rls1901_3

SUT VM

 DUT

TG VM

vNIC

Linux
Kernel

Linux-Guest
User-Space

Virtual 2-Node Topology: vNIC-to-vNIC Switching

Forwarding
Context

SUT1 VM

 DUT1

TG VM

vNIC

Linux
Kernel

Linux-Guest
User-Space

SUT2 VM

 DUT2

vNIC

Linux
Kernel

Linux-Guest
User-Space

Virtual 3-Node Topology: vNIC-to-vNIC Switching

Forwarding
Context

Forwarding
Context

SUT1 and SUT2 are two VMs (running Ubuntu or Centos, depending on the test suite), TG is a TrafficGenerator (running Ubuntu VM). SUTs run VPP SWapplication in Linux user-mode as a Device Under Test(DUT) within the VM. TG runs Scapy SW application as a packet Traffic Generator. Network connectivitybetween SUTs and to TG is provided using virtual NICs and VMs’ virtio drivers.
Virtual testbeds are created on-demand whenever a verification job is started (e.g. triggered by the gerritpatch submission) and destroyed upon completion of all functional tests. Each node is a Virtual Machineand each connection that is drawn on the diagram is available for use in any test case. During the testexecution, all nodes are reachable thru the Management network connected to every node via dedicatedvirtual NICs and virtual links (not shown above for clarity).

5.1. Overview 221

CSIT REPORT, Release rls1901_3

Nested-VM Service Switching

Nested-VM (Virtual Machine) service switching topology test cases require VPP DUT to communicatewith nested-VM(s) over vhost-user virtual interfaces. Nested-VM(s) is(are) created on SUT1 and/or SUT2for the duration of these particular test cases only. Virtual test topology with nested-VM(s) is shown inthe figure below.
Virtual 3-Node Topology: nested-VM Service Switching

SUT1 VM

nested-VM[n]nested-VM[1] nested-VM[2]

DUT1

TG VM

Linux
Kernel

Linux-Guest
User-Space

VNF[1]
…

VNF[2] VNF[n]

vNIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

SUT2 VM

nested-VM[n]nested-VM[1] nested-VM[2]

DUT2

Linux
Kernel

Linux-Guest
User-Space

VNF[1]
…

VNF[2] VNF[n]

vNIC

…
Fwd

Cxt[0]
Fwd

Cxt[1]
Fwd

Cxt[2]
Fwd

Cxt[n]

5.1.2 Functional Tests Coverage

CSIT-1901.3 includes following VPP functionality tested in virtual VM environment:
Functionality DescriptionACL Ingress Access Control List security for L2 Bridge-Domain MAC switching, IPv4routing, IPv6 routing.COP COP address white-list and black-list filtering for IPv4 and IPv6 routing.DHCP Dynamic Host Control Protocol Client and Proxy for IPv4 and IPv6 routing.GRE Generic Routing Encapsulation Overlay Tunnels for IPv4.IPSec IPSec tunnel and transport modes.IPv4 IPv4 routing, RPF, ARP, Proxy ARP, ICMPv4.IPv6 IPv6 routing, NS/ND, RA, ICMPv6.L2BD L2 Bridge-Domain switching for untagged Ethernet, dot1q and dot1ad tagged.L2XC L2 Cross-Connect switching for untagged Ethernet, dot1q and dot1ad tagged.LISP Locator/ID Separation Protocol overlay tunnels and locator/id mapping control.QoS Policer Me-tering Ingress packet rate metering and marking for IPv4, IPv6.
Softwire Tunnels IPv4-in-IPv6 softwire tunnels.Tap Interface Baseline Linux tap interface tests.IPFIX and SPAN Telemetry IPFIX netflow statistics and SPAN port mirroring.uRPF Source Se-curity Unicast Reverse Path Forwarding security for IPv4 and IPv6 routing.
VLAN Tag Trans-lation L2 VLAN tag translation 2to2, 2to1, 1to2, 1to1.
VRF Routing Multi-context VRF IPVPN routing for IPv4 and IPv6.VXLAN VXLAN overlay tunneling for L2-over-IPv4 and -over-IPv6.

5.1.3 Functional Tests Naming

CSIT-1901.3 follows a common structured naming convention for all performance and system functionaltests, introduced in CSIT-17.01.

222 Chapter 5. VPP Functional

CSIT REPORT, Release rls1901_3

The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-vention is provided on Test Naming (page 239).

5.2 Release Notes

5.2.1 Changes in CSIT-1901.3

1. TEST FRAMEWORK
• Bug fixes.

2. CSIT TEST MIMGRATION
• VPP_Path: Continuing migration of the original FD.io CSIT VIRL tests to VPP-make_test VPPintegration tests for functional acceptance of VPP feature path(s) driven by use case(s). See P1and P2 markup in CSIT_VIRL migration progress130

5.2.2 Known Issues

List of known issues in CSIT-1901.3 for VPP functional tests in VIRL:
JiraID Issue Description1 CSIT-129131VPP-99132

DHCPv4 client: Client responses to DHCPv4 OFFER sent with different XID. Clientreplies with DHCPv4 REQUESTmessage when received DHCPv4 OFFERmessage withdifferent (wrong) XID.
2 CSIT-398133VPP-380134

Softwire - MAP-E: Incorrect calculation of IPv6 destination address when IPv4 prefix is0. IPv6 destination address is wrongly calculated in case that IPv4 prefix is equal to 0and IPv6 prefix is less than 40.
3 CSIT-399135VPP-435136

Softwire - MAP-E: Map domain is created when incorrect parameters provided. Mapdomain is created in case that the sum of suffix length of IPv4 prefix and PSID lengthis greater than EA bits length. IPv6 destination address contains bits writen with PSIDover the EA-bit length when IPv4 packet is sent.4 CSIT-409137VPP-406138
IPv6 RA: Incorrect IPv6 destination address in response to ICMPv6 Router Solicita-tion. Wrong IPv6 destination address (ff02::1) is used in ICMPv6 Router Advertisementpacket sent as a response to received ICMPv6 Router Solicitation packet.

5 CSIT-565139 Vhost-user: QEMU reconnect does not work. QEMU 2.5.0 used in CSIT does not sup-port vhost-user reconnect. Requires upgrading CSIT VIRL environment to QEMU 2.7.0.6 CSIT-1371140 Softwire: Exclude all softwire functional tests until KWs re-worked to PAPI Map com-mands were remove from VAT by VPP patch https://gerrit.fd.io/r/#/c/16115/.
130 https://docs.google.com/spreadsheets/d/1PciV8XN9v1qHbIRUpFJoqyES29_vik7lcFDl73G1usc/edit?usp=sharing131 https://jira.fd.io/browse/CSIT-129132 https://jira.fd.io/browse/VPP-99133 https://jira.fd.io/browse/CSIT-398134 https://jira.fd.io/browse/VPP-380135 https://jira.fd.io/browse/CSIT-399136 https://jira.fd.io/browse/VPP-435137 https://jira.fd.io/browse/CSIT-409138 https://jira.fd.io/browse/VPP-406139 https://jira.fd.io/browse/CSIT-565140 https://jira.fd.io/browse/CSIT-1371

5.2. Release Notes 223

https://docs.google.com/spreadsheets/d/1PciV8XN9v1qHbIRUpFJoqyES29_vik7lcFDl73G1usc/edit?usp=sharing
https://jira.fd.io/browse/CSIT-129
https://jira.fd.io/browse/CSIT-129
https://jira.fd.io/browse/VPP-99
https://jira.fd.io/browse/VPP-99
https://jira.fd.io/browse/CSIT-398
https://jira.fd.io/browse/CSIT-398
https://jira.fd.io/browse/VPP-380
https://jira.fd.io/browse/VPP-380
https://jira.fd.io/browse/CSIT-399
https://jira.fd.io/browse/CSIT-399
https://jira.fd.io/browse/VPP-435
https://jira.fd.io/browse/VPP-435
https://jira.fd.io/browse/CSIT-409
https://jira.fd.io/browse/CSIT-409
https://jira.fd.io/browse/VPP-406
https://jira.fd.io/browse/VPP-406
https://jira.fd.io/browse/CSIT-565
https://jira.fd.io/browse/CSIT-565
https://jira.fd.io/browse/CSIT-1371
https://jira.fd.io/browse/CSIT-1371
https://gerrit.fd.io/r/#/c/16115/

CSIT REPORT, Release rls1901_3

5.3 Test Environment

CSIT VPP functional tests are executed in FD.io VIRL testbeds. The physical VIRL testbed infrastructureconsists of three VIRL servers:
• tb4-virl1:

– Status: Production
– OS: Ubuntu 16.04.2
– VIRL STD server version: 0.10.32.16
– VIRL UWM server version: 0.10.32.16

• tb4-virl2:
– Status: Production
– OS: Ubuntu 16.04.2
– VIRL STD server version: 0.10.32.16
– VIRL UWM server version: 0.10.32.16

• tb4-virl3:
– Status: Production
– OS: Ubuntu 16.04.2
– VIRL STD server version: 0.10.32.19
– VIRL UWM server version: 0.10.32.19

• VIRL hosts: Cisco UCS C240-M4, each with 2x Intel Xeon E5-2699 v3 (2.30 GHz, 18c), 512GBRAM.
Whenever a patch is submitted to gerrit for review, parallel VIRL simulations are started to reduce the timeof execution of all functional tests. The number of parallel VIRL simulations is equal to a number of testgroups defined by TEST_GROUPS variable in csit/bootstrap.sh file. VIRL host to run VIRL simulationis selected based on least load algorithm per VIRL simulation.
Every VIRL simulation uses the same three-node logical ring topology - Traffic Generator (TG node) andtwo Systems Under Test (SUT1 and SUT2). The appropriate pre-built VPP packages built by Jenkins forthe patch under review are then installed on the two SUTs, along with their /etc/vpp/startup.conf file,in all VIRL simulations.

5.3.1 SUT Settings - VIRL Guest VM

SUT VMs’ settings are defined in VIRL topologies directory141
• List of SUT VM interfaces:

<interface id=”0” name=”GigabitEthernet0/4/0”/> <interface id=”1”name=”GigabitEthernet0/5/0”/> <interface id=”2” name=”GigabitEthernet0/6/0”/><interface id=”3” name=”GigabitEthernet0/7/0”/>
• Number of 2MB hugepages: 1024.
• Maximum number of memory map areas: 20000.
• Kernel Shared Memory Max: 2147483648 (vm.nr_hugepages * 2 * 1024 * 1024).

141 https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

224 Chapter 5. VPP Functional

https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

CSIT REPORT, Release rls1901_3

5.3.2 SUT Settings - VIRL Guest OS Linux

In CSIT terminology, the VM operating system for both SUTs that VPP-19.01.3 release has been testedwith, is the following:
1. Ubuntu VIRL image

This image implies Ubuntu 16.04.1 LTS, current as of yyyy-mm-dd (that is, package versions arethose that would have been installed by a apt-get update, apt-get upgrade on that day), producedby CSIT disk image build scripts.
The exact list of installed packages and their versions (including the Linux kernel package version)are included in VIRL ubuntu images lists142.
A replica of this VM image can be built by running the build.sh script in CSIT repository.

2. CentOS VIRL image
This image implies Centos 7.4-1711, current as of yyyy-mm-dd (that is, package versions are thosethat would have been installed by a yum update, yum upgrade on that day), produced by CSIT diskimage build scripts.
The exact list of installed packages and their versions (including the Linux kernel package version)are included in VIRL centos images lists143.
A replica of this VM image can be built by running the build.sh script in CSIT repository.

3. Nested VM image
In addition to the “main” VM image, tests which require VPP to communicate to a VM over a vhost-user interface, utilize a “nested” VM image.
This “nested” VM is dynamically created and destroyed as part of a test case, and therefore the“nested” VM image is optimized to be small, lightweight and have a short boot time. The “nested”VM image is not built around any established Linux distribution, but is based on BuildRoot144, a toolfor building embedded Linux systems. Just as for the “main” image, scripts to produce an identicalreplica of the “nested” image are included in CSIT GIT repository, and the image can be rebuilt usingthe “build.sh” script at VIRL nested145.

5.3.3 DUT Settings - VPP

Every System Under Test runs VPP SW application in Linux user-mode as a Device Under Test (DUT)node.
DUT Port Configuration

Port configuration of DUTs is defined in topology file that is generated per VIRL simulation based on thedefinition stored in VIRL topologies directory146.
Example of DUT nodes configuration:
DUT1:

type: DUT
host: "10.30.51.157"
arch: x86_64
port: 22
username: cisco
honeycomb:

(continues on next page)
142 https://git.fd.io/csit/tree/resources/tools/disk-image-builder/ubuntu/lists/?h=rls1901_3143 https://git.fd.io/csit/tree/resources/tools/disk-image-builder/centos/lists/?h=rls1901_3144 https://buildroot.org/145 https://git.fd.io/csit/tree/resources/tools/disk-image-builder/nested/?h=rls1901_3146 https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

5.3. Test Environment 225

https://git.fd.io/csit/tree/resources/tools/disk-image-builder/ubuntu/lists/?h=rls1901_3
https://git.fd.io/csit/tree/resources/tools/disk-image-builder/centos/lists/?h=rls1901_3
https://buildroot.org/
https://git.fd.io/csit/tree/resources/tools/disk-image-builder/nested/?h=rls1901_3
https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
user: admin
passwd: admin
port: 8183
netconf_port: 2831

priv_key: |
-----BEGIN RSA PRIVATE KEY-----
MIIEpgIBAAKCAQEAwUDlTpzSHpwLQotZOFS4AgcPNEWCnP1AB2hWFmvI+8Kah/gb
v8ruZU9RqhPs56tyKzxbhvNkY4VbH5F1GilHZu3mLqzM4KfghMmaeMEjO1T7BYYd
vuBfTvIluljfQ2vAlnYrDwn+ClxJk81m0pDgvrLEX4qVVh2sGh7UEkYy5r82DNa2
4VjzPB1J/c8a9zP8FoZUhYIzF4FLvRMjUADpbMXgJMsGpaZLmz95ap0Eot7vb1Cc
1LvF97iyBCrtIOSKRKA50ZhLGjMKmOwnYU+cP5718tbproDVi6VJOo7zeuXyetMs
8YBl9kWblWG9BqP9jctFvsmi5G7hXgq1Y8u+DwIDAQABAoIBAQC/W4E0DHjLMny7
0bvw2YKzD0Zw3fttdB94tkm4PdZv5MybooPnsAvLaXVV0hEdfVi5kzSWNl/LY/tN
EP1BgGphc2QgB59/PPxGwFIjDCvUzlsZpynBHe+B/qh5ExNQcVvsIOqWI7DXlXaN
0i/khOzmJ6HncRRah1spKimYRsaUUDskyg7q3QqMWVaqBbbMvLs/w7ZWd/zoDqCU
MY/pCI6hkB3QbRo0OdiZLohphBl2ShABTwjvVyyKL5UA4jAEneJrhH5gWVLXnfgD
p62W5CollKEYblC8mUkPxpP7Qo277zw3xaq+oktIZhc5SUEUd7nJZtNqVAHqkItW
79VmpKyxAoGBAPfU+kqNPaTSvp+x1n5sn2SgipzDtgi9QqNmC4cjtrQQaaqI57SG
OHw1jX8i7L2G1WvVtkHg060nlEVo5n65ffFOqeVBezLVJ7ghWI8U+oBiJJyQ4boD
GJVNsoOSUQ0rtuGd9eVwfDk3ol9aCN0KK53oPfIYli29pyu4l095kg11AoGBAMef
bPEMBI/2XmCPshLSwhGFl+dW8d+Klluj3CUQ/0vUlvma3dfBOYNsIwAgTP0iIUTg
8DYE6KBCdPtxAUEI0YAEAKB9ry1tKR2NQEIPfslYytKErtwjAiqSi0heM6+zwEzu
f54Z4oBhsMSL0jXoOMnu+NZzEc6EUdQeY4O+jhjzAoGBAIogC3dtjMPGKTP7+93u
UE/XIioI8fWg9fj3sMka4IMu+pVvRCRbAjRH7JrFLkjbUyuMqs3Arnk9K+gbdQt/
+m95Njtt6WoFXuPCwgbM3GidSmZwYT4454SfDzVBYScEDCNm1FuR+8ov9bFLDtGT
D4gsngnGJj1MDFXTxZEn4nzZAoGBAKCg4WmpUPaCuXibyB+rZavxwsTNSn2lJ83/
sYJGBhf/raiV/FLDUcM1vYg5dZnu37RsB/5/vqxOLZGyYd7x+Jo5HkQGPnKgNwhn
g8BkdZIRF8uEJqxOo0ycdOU7n/2O93swIpKWo5LIiRPuqqzj+uZKnAL7vuVdxfaY
qVz2daMPAoGBALgaaKa3voU/HO1PYLWIhFrBThyJ+BQSQ8OqrEzC8AnegWFxRAM8
EqrzZXl7ACUuo1dH0Eipm41j2+BZWlQjiUgq5uj8+yzy+EU1ZRRyJcOKzbDACeuD
BpWWSXGBI5G4CppeYLjMUHZpJYeX1USULJQd2c4crLJKb76E8gz3Z9kN
-----END RSA PRIVATE KEY-----

interfaces:
port1:

mac_address: "fa:16:3e:9b:89:52"
pci_address: "0000:00:04.0"
link: link1

port2:
mac_address: "fa:16:3e:7a:33:60"
pci_address: "0000:00:05.0"
link: link4

port3:
mac_address: "fa:16:3e:29:b7:ae"
pci_address: "0000:00:06.0"
link: link3

port4:
mac_address: "fa:16:3e:76:8d:ff"
pci_address: "0000:00:07.0"
link: link6

DUT2:
type: DUT
host: "10.30.51.156"
arch: x86_64
port: 22
username: cisco
honeycomb:
user: admin
passwd: admin
port: 8183
netconf_port: 2831

(continues on next page)

226 Chapter 5. VPP Functional

CSIT REPORT, Release rls1901_3

(continued from previous page)
priv_key: |

-----BEGIN RSA PRIVATE KEY-----
MIIEpgIBAAKCAQEAwUDlTpzSHpwLQotZOFS4AgcPNEWCnP1AB2hWFmvI+8Kah/gb
v8ruZU9RqhPs56tyKzxbhvNkY4VbH5F1GilHZu3mLqzM4KfghMmaeMEjO1T7BYYd
vuBfTvIluljfQ2vAlnYrDwn+ClxJk81m0pDgvrLEX4qVVh2sGh7UEkYy5r82DNa2
4VjzPB1J/c8a9zP8FoZUhYIzF4FLvRMjUADpbMXgJMsGpaZLmz95ap0Eot7vb1Cc
1LvF97iyBCrtIOSKRKA50ZhLGjMKmOwnYU+cP5718tbproDVi6VJOo7zeuXyetMs
8YBl9kWblWG9BqP9jctFvsmi5G7hXgq1Y8u+DwIDAQABAoIBAQC/W4E0DHjLMny7
0bvw2YKzD0Zw3fttdB94tkm4PdZv5MybooPnsAvLaXVV0hEdfVi5kzSWNl/LY/tN
EP1BgGphc2QgB59/PPxGwFIjDCvUzlsZpynBHe+B/qh5ExNQcVvsIOqWI7DXlXaN
0i/khOzmJ6HncRRah1spKimYRsaUUDskyg7q3QqMWVaqBbbMvLs/w7ZWd/zoDqCU
MY/pCI6hkB3QbRo0OdiZLohphBl2ShABTwjvVyyKL5UA4jAEneJrhH5gWVLXnfgD
p62W5CollKEYblC8mUkPxpP7Qo277zw3xaq+oktIZhc5SUEUd7nJZtNqVAHqkItW
79VmpKyxAoGBAPfU+kqNPaTSvp+x1n5sn2SgipzDtgi9QqNmC4cjtrQQaaqI57SG
OHw1jX8i7L2G1WvVtkHg060nlEVo5n65ffFOqeVBezLVJ7ghWI8U+oBiJJyQ4boD
GJVNsoOSUQ0rtuGd9eVwfDk3ol9aCN0KK53oPfIYli29pyu4l095kg11AoGBAMef
bPEMBI/2XmCPshLSwhGFl+dW8d+Klluj3CUQ/0vUlvma3dfBOYNsIwAgTP0iIUTg
8DYE6KBCdPtxAUEI0YAEAKB9ry1tKR2NQEIPfslYytKErtwjAiqSi0heM6+zwEzu
f54Z4oBhsMSL0jXoOMnu+NZzEc6EUdQeY4O+jhjzAoGBAIogC3dtjMPGKTP7+93u
UE/XIioI8fWg9fj3sMka4IMu+pVvRCRbAjRH7JrFLkjbUyuMqs3Arnk9K+gbdQt/
+m95Njtt6WoFXuPCwgbM3GidSmZwYT4454SfDzVBYScEDCNm1FuR+8ov9bFLDtGT
D4gsngnGJj1MDFXTxZEn4nzZAoGBAKCg4WmpUPaCuXibyB+rZavxwsTNSn2lJ83/
sYJGBhf/raiV/FLDUcM1vYg5dZnu37RsB/5/vqxOLZGyYd7x+Jo5HkQGPnKgNwhn
g8BkdZIRF8uEJqxOo0ycdOU7n/2O93swIpKWo5LIiRPuqqzj+uZKnAL7vuVdxfaY
qVz2daMPAoGBALgaaKa3voU/HO1PYLWIhFrBThyJ+BQSQ8OqrEzC8AnegWFxRAM8
EqrzZXl7ACUuo1dH0Eipm41j2+BZWlQjiUgq5uj8+yzy+EU1ZRRyJcOKzbDACeuD
BpWWSXGBI5G4CppeYLjMUHZpJYeX1USULJQd2c4crLJKb76E8gz3Z9kN
-----END RSA PRIVATE KEY-----

interfaces:
port1:

mac_address: "fa:16:3e:ad:6c:7d"
pci_address: "0000:00:04.0"
link: link2

port2:
mac_address: "fa:16:3e:94:a4:99"
pci_address: "0000:00:05.0"
link: link5

port3:
mac_address: "fa:16:3e:75:92:da"
pci_address: "0000:00:06.0"
link: link3

port4:
mac_address: "fa:16:3e:2c:b1:2a"
pci_address: "0000:00:07.0"
link: link6

VPP Version

VPP-19.01.3 release
VPP Installed Packages - Ubuntu

Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-==============-=================-============-===

(continues on next page)

5.3. Test Environment 227

CSIT REPORT, Release rls1901_3

(continued from previous page)
ii vpp 19.01.3-release amd64 Vector Packet Processing--executables
ii vpp-api-python 19.01.3-release amd64 VPP Python API bindings
ii vpp-dbg 19.01.3-release amd64 Vector Packet Processing--debug symbols
ii vpp-dev 19.01.3-release amd64 Vector Packet Processing--development support
ii vpp-lib 19.01.3-release amd64 Vector Packet Processing--runtime libraries
ii vpp-plugins 19.01.3-release amd64 Vector Packet Processing--runtime plugins

VPP Installed Packages - Centos

$ rpm -qai vpp*
Name : vpp-selinux-policy
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:48 AM EDT
Group : System Environment/Base
Size : 102213
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : VPP Security-Enhanced Linux (SELinux) policy
Description :
This package contains a tailored VPP SELinux policy
Name : vpp-plugins
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:51 AM EDT
Group : System Environment/Libraries
Size : 84938565
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : Vector Packet Processing--runtime plugins
Description :
This package contains VPP plugins
Name : vpp-api-python
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:48 AM EDT
Group : Development/Libraries
Size : 163624
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : VPP api python bindings
Description :
This package contains the python bindings for the vpp api
Name : vpp

(continues on next page)

228 Chapter 5. VPP Functional

CSIT REPORT, Release rls1901_3

(continued from previous page)
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:48 AM EDT
Group : Unspecified
Size : 2522332
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : Vector Packet Processing
Description :
This package provides VPP executables: vpp, vpp_api_test, vpp_json_test
vpp - the vector packet engine
vpp_api_test - vector packet engine API test tool
vpp_json_test - vector packet engine JSON test tool
Name : vpp-lib
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:48 AM EDT
Group : System Environment/Libraries
Size : 12212277
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : VPP libraries
Description :
This package contains the VPP shared libraries, including:
vppinfra - foundation library supporting vectors, hashes, bitmaps, pools, and string formatting.
svm - vm library
vlib - vector processing library
vlib-api - binary API library
vnet - network stack library
Name : vpp-devel
Version : 19.01.3
Release : release
Architecture: x86_64
Install Date: Fri 19 Jul 2019 03:34:52 AM EDT
Group : Development/Libraries
Size : 12836380
License : ASL 2.0
Signature : (none)
Source RPM : vpp-19.01.3-release.src.rpm
Build Date : Thu 18 Jul 2019 06:12:53 PM EDT
Build Host : 4545ab742a18
Relocations : (not relocatable)
Summary : VPP header files, static libraries
Description :
This package contains the header files for VPP.
Install this package if you want to write a
program for compilation and linking with vpp lib.
vlib
vlibmemory
vnet - devices, classify, dhcp, ethernet flow, gre, ip, etc.
vpp-api

(continues on next page)

5.3. Test Environment 229

CSIT REPORT, Release rls1901_3

(continued from previous page)
vppinfra

VPP Startup Configuration

VPP startup configuration is common for all test cases except test cases related to SW Crypto device.
Common Configuration

$ cat /etc/vpp/startup.conf
unix {

nodaemon
log /var/log/vpp/vpp.log
full-coredump
cli-listen /run/vpp/cli.sock
gid vpp

}

api-trace {
This stanza controls binary API tracing. Unless there is a very strong reason,
please leave this feature enabled.

on
Additional parameters:
##
To set the number of binary API trace records in the circular buffer, configure nitems
##
nitems <nnn>
##
To save the api message table decode tables, configure a filename. Results in /tmp/<filename>
Very handy for understanding api message changes between versions, identifying missing
plugins, and so forth.
##
save-api-table <filename>
}

api-segment {
gid vpp

}

socksvr {
default

}

cpu {
In the VPP there is one main thread and optionally the user can create worker(s)
The main thread and worker thread(s) can be pinned to CPU core(s) manually or automatically

Manual pinning of thread(s) to CPU core(s)

Set logical CPU core where main thread runs, if main core is not set
VPP will use core 1 if available
main-core 1

Set logical CPU core(s) where worker threads are running
corelist-workers 2-3,18-19

Automatic pinning of thread(s) to CPU core(s)

Sets number of CPU core(s) to be skipped (1 ... N-1)
Skipped CPU core(s) are not used for pinning main thread and working thread(s).
The main thread is automatically pinned to the first available CPU core and worker(s)

(continues on next page)

230 Chapter 5. VPP Functional

CSIT REPORT, Release rls1901_3

(continued from previous page)
are pinned to next free CPU core(s) after core assigned to main thread
skip-cores 4

Specify a number of workers to be created
Workers are pinned to N consecutive CPU cores while skipping "skip-cores" CPU core(s)
and main thread's CPU core
workers 2

Set scheduling policy and priority of main and worker threads

Scheduling policy options are: other (SCHED_OTHER), batch (SCHED_BATCH)
idle (SCHED_IDLE), fifo (SCHED_FIFO), rr (SCHED_RR)
scheduler-policy fifo

Scheduling priority is used only for "real-time policies (fifo and rr),
and has to be in the range of priorities supported for a particular policy
scheduler-priority 50

}

dpdk {
Change default settings for all interfaces
dev default {

Number of receive queues, enables RSS
Default is 1
num-rx-queues 3

Number of transmit queues, Default is equal
to number of worker threads or 1 if no workers treads
num-tx-queues 3

Number of descriptors in transmit and receive rings
increasing or reducing number can impact performance
Default is 1024 for both rx and tx
num-rx-desc 512
num-tx-desc 512

VLAN strip offload mode for interface
Default is off
vlan-strip-offload on

}

Whitelist specific interface by specifying PCI address
dev 0000:02:00.0

Blacklist specific device type by specifying PCI vendor:device
Whitelist entries take precedence

blacklist 8086:10fb

Set interface name
dev 0000:02:00.1 {
name eth0
}

Whitelist specific interface by specifying PCI address and in
addition specify custom parameters for this interface
dev 0000:02:00.1 {
num-rx-queues 2
}

Specify bonded interface and its slaves via PCI addresses
##

(continues on next page)

5.3. Test Environment 231

CSIT REPORT, Release rls1901_3

(continued from previous page)
Bonded interface in XOR load balance mode (mode 2) with L3 and L4 headers
vdev eth_bond0,mode=2,slave=0000:02:00.0,slave=0000:03:00.0,xmit_policy=l34
vdev eth_bond1,mode=2,slave=0000:02:00.1,slave=0000:03:00.1,xmit_policy=l34
##
Bonded interface in Active-Back up mode (mode 1)
vdev eth_bond0,mode=1,slave=0000:02:00.0,slave=0000:03:00.0
vdev eth_bond1,mode=1,slave=0000:02:00.1,slave=0000:03:00.1

Change UIO driver used by VPP, Options are: igb_uio, vfio-pci,
uio_pci_generic or auto (default)
uio-driver vfio-pci

Disable multi-segment buffers, improves performance but
disables Jumbo MTU support
no-multi-seg

Increase number of buffers allocated, needed only in scenarios with
large number of interfaces and worker threads. Value is per CPU socket.
Default is 16384
num-mbufs 128000

Change hugepages allocation per-socket, needed only if there is need for
larger number of mbufs. Default is 256M on each detected CPU socket
socket-mem 2048,2048

Disables UDP / TCP TX checksum offload. Typically needed for use
faster vector PMDs (together with no-multi-seg)
no-tx-checksum-offload

}

plugins {
Adjusting the plugin path depending on where the VPP plugins are
path /ws/vpp/build-root/install-vpp-native/vpp/lib/vpp_plugins

Disable all plugins by default and then selectively enable specific plugins
plugin default { disable }
plugin dpdk_plugin.so { enable }
plugin acl_plugin.so { enable }

Enable all plugins by default and then selectively disable specific plugins
plugin dpdk_plugin.so { disable }
plugin acl_plugin.so { disable }

}

SW Crypto Device Configuration

$ cat /etc/vpp/startup.conf
unix
{

cli-listen /run/vpp/cli.sock
gid vpp
nodaemon
full-coredump
log /tmp/vpp.log

}
api-segment
{

gid vpp
}
dpdk

(continues on next page)

232 Chapter 5. VPP Functional

CSIT REPORT, Release rls1901_3

(continued from previous page)
{

vdev cryptodev_aesni_gcm_pmd,socket_id=0
vdev cryptodev_aesni_mb_pmd,socket_id=0

}

5.3.4 TG Settings - Scapy

Traffic Generator node is VM running the same OS Linux as SUTs. Ports of this VM are used as source(Tx) and destination (Rx) ports for the traffic.
Traffic scripts of test cases are executed on this VM.
TG VM Configuration

Configuration of the TG VMs is defined in VIRL topologies directory147.
/csit/resources/tools/virl/topologies/double-ring-nested.xenial.virl

• List of TG VM interfaces::
<interface id="0" name="eth1"/>
<interface id="1" name="eth2"/>
<interface id="2" name="eth3"/>
<interface id="3" name="eth4"/>
<interface id="4" name="eth5"/>
<interface id="5" name="eth6"/>

TG Port Configuration

Port configuration of TG is defined in topology file that is generated per VIRL simulation based on thedefinition stored in VIRL topologies directory148.
Example of TG node configuration::
TG:

type: TG
host: "10.30.51.155"
arch: x86_64
port: 22
username: cisco
priv_key: |

-----BEGIN RSA PRIVATE KEY-----
MIIEpgIBAAKCAQEAwUDlTpzSHpwLQotZOFS4AgcPNEWCnP1AB2hWFmvI+8Kah/gb
v8ruZU9RqhPs56tyKzxbhvNkY4VbH5F1GilHZu3mLqzM4KfghMmaeMEjO1T7BYYd
vuBfTvIluljfQ2vAlnYrDwn+ClxJk81m0pDgvrLEX4qVVh2sGh7UEkYy5r82DNa2
4VjzPB1J/c8a9zP8FoZUhYIzF4FLvRMjUADpbMXgJMsGpaZLmz95ap0Eot7vb1Cc
1LvF97iyBCrtIOSKRKA50ZhLGjMKmOwnYU+cP5718tbproDVi6VJOo7zeuXyetMs
8YBl9kWblWG9BqP9jctFvsmi5G7hXgq1Y8u+DwIDAQABAoIBAQC/W4E0DHjLMny7
0bvw2YKzD0Zw3fttdB94tkm4PdZv5MybooPnsAvLaXVV0hEdfVi5kzSWNl/LY/tN
EP1BgGphc2QgB59/PPxGwFIjDCvUzlsZpynBHe+B/qh5ExNQcVvsIOqWI7DXlXaN
0i/khOzmJ6HncRRah1spKimYRsaUUDskyg7q3QqMWVaqBbbMvLs/w7ZWd/zoDqCU
MY/pCI6hkB3QbRo0OdiZLohphBl2ShABTwjvVyyKL5UA4jAEneJrhH5gWVLXnfgD
p62W5CollKEYblC8mUkPxpP7Qo277zw3xaq+oktIZhc5SUEUd7nJZtNqVAHqkItW
79VmpKyxAoGBAPfU+kqNPaTSvp+x1n5sn2SgipzDtgi9QqNmC4cjtrQQaaqI57SG
OHw1jX8i7L2G1WvVtkHg060nlEVo5n65ffFOqeVBezLVJ7ghWI8U+oBiJJyQ4boD

(continues on next page)
147 https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3148 https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

5.3. Test Environment 233

https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3
https://git.fd.io/csit/tree/resources/tools/virl/topologies/?h=rls1901_3

CSIT REPORT, Release rls1901_3

(continued from previous page)
GJVNsoOSUQ0rtuGd9eVwfDk3ol9aCN0KK53oPfIYli29pyu4l095kg11AoGBAMef
bPEMBI/2XmCPshLSwhGFl+dW8d+Klluj3CUQ/0vUlvma3dfBOYNsIwAgTP0iIUTg
8DYE6KBCdPtxAUEI0YAEAKB9ry1tKR2NQEIPfslYytKErtwjAiqSi0heM6+zwEzu
f54Z4oBhsMSL0jXoOMnu+NZzEc6EUdQeY4O+jhjzAoGBAIogC3dtjMPGKTP7+93u
UE/XIioI8fWg9fj3sMka4IMu+pVvRCRbAjRH7JrFLkjbUyuMqs3Arnk9K+gbdQt/
+m95Njtt6WoFXuPCwgbM3GidSmZwYT4454SfDzVBYScEDCNm1FuR+8ov9bFLDtGT
D4gsngnGJj1MDFXTxZEn4nzZAoGBAKCg4WmpUPaCuXibyB+rZavxwsTNSn2lJ83/
sYJGBhf/raiV/FLDUcM1vYg5dZnu37RsB/5/vqxOLZGyYd7x+Jo5HkQGPnKgNwhn
g8BkdZIRF8uEJqxOo0ycdOU7n/2O93swIpKWo5LIiRPuqqzj+uZKnAL7vuVdxfaY
qVz2daMPAoGBALgaaKa3voU/HO1PYLWIhFrBThyJ+BQSQ8OqrEzC8AnegWFxRAM8
EqrzZXl7ACUuo1dH0Eipm41j2+BZWlQjiUgq5uj8+yzy+EU1ZRRyJcOKzbDACeuD
BpWWSXGBI5G4CppeYLjMUHZpJYeX1USULJQd2c4crLJKb76E8gz3Z9kN
-----END RSA PRIVATE KEY-----

interfaces:
port3:

mac_address: "fa:16:3e:b9:e1:27"
pci_address: "0000:00:06.0"
link: link1
driver: virtio-pci

port4:
mac_address: "fa:16:3e:e9:c8:68"
pci_address: "0000:00:07.0"
link: link4
driver: virtio-pci

port5:
mac_address: "fa:16:3e:e8:d3:47"
pci_address: "0000:00:08.0"
link: link2
driver: virtio-pci

port6:
mac_address: "fa:16:3e:cf:ca:58"
pci_address: "0000:00:09.0"
link: link5
driver: virtio-pci

Traffic Generator

Functional tests utilize Scapy as a traffic generator. Scapy v2.3.1 is used for VPP-19.01.3 release tests.

5.4 Documentation

CSIT VPP Functional Tests Documentation149 contains detailed functional description and input param-eters for each test case.

149 https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.func.html

234 Chapter 5. VPP Functional

https://docs.fd.io/csit/rls1901_3/doc/tests.vpp.func.html

CHAPTER6

CSIT Framework

6.1 Design

FD.io CSIT system design needs to meet continuously expanding requirements of FD.io projects includingVPP, related sub-systems (e.g. plugin applications, DPDK drivers) and FD.io applications (e.g. DPDK appli-cations), as well as growing number of compute platforms running those applications. With CSIT projectscope and charter including both FD.io continuous testing AND performance trending/comparisons,those evolving requirements further amplify the need for CSIT framework modularity, flexibility and us-ability.

6.1.1 Design Hierarchy

CSIT follows a hierarchical system design with SUTs and DUTs at the bottom level of the hierarchy, pre-sentation level at the top level and a number of functional layers in-between. The current CSIT systemdesign including CSIT framework is depicted in the figure below.

235

CSIT REPORT, Release rls1901_3

10/24/17 <number>

Tools
(doc-gen,

report-

gen,

test_env-

builders)

CSIT System Design Hierarchy

Python Library

Performance Traffic

Generator Drivers

(TRex)

Func�onal

Traffic

Generator

Scripts

(Scapy)

Level-2 Robot Keyword Inventory

Tests (vpp-verify, csit-verify, …)

Traffic Profiles

Presenta�on & Analy�cs

FD.io CSIT Release ReportsDocsTrending

Test

data

(Python)

Python Calls

Python
Calls

Python Calls

Python
Calls

Shell
scripts

Robot Calls

Python
Calls

Python
Calls

Shell scripts
Robot Calls

VPP: VAT Cals

CI/CD Jenkins Jobs

 Users

Performance Functionality Programing

 CSIT Tests

 CSIT Framework

Topology

files

(yaml)

 CSIT Tests

 SUT DUT SUT DUT SUT TG SUT DUT SUT DUT SUT TG SUT DUT SUT TG

Physical topologies Virtualied topologies i.e. VIRL

Python
Calls

A brief bottom-up description is provided here:
1. SUTs, DUTs, TGs

• SUTs - Systems Under Test;
• DUTs - Devices Under Test;
• TGs - Traffic Generators;

2. Level-1 libraries - Robot and Python
• Lowest level CSIT libraries abstracting underlying test environment, SUT, DUT and TGspecifics;
• Used commonly across multiple L2 KWs;
• Performance and functional tests:

– L1 KWs (KeyWords) are implemented as RF libraries and Python libraries;
• Performance TG L1 KWs:

– All L1 KWs are implemented as Python libraries:
* Support for TRex only today;
* CSIT IXIA drivers in progress;

• Performance data plane traffic profiles:
– TG-specific stream profiles provide full control of:

* Packet definition – layers, MACs, IPs, ports, combinations thereof e.g. IPs and UDPports;
* Stream definitions - different streams can run together, delayed, one after each other;
* Streamprofiles are independent of CSIT framework and can be used in any T-rex setup,can be sent anywhere to repeat tests with exactly the same setup;

236 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

* Easily extensible – one can create a new stream profile that meets tests requirements;
* Same stream profile can be used for different tests with the same traffic needs;

• Functional data plane traffic scripts:
– Scapy specific traffic scripts;

3. Level-2 libraries - Robot resource files:
• Higher level CSIT libraries abstracting required functions for executing tests;
• L2 KWs are classified into the following functional categories:

– Configuration, test, verification, state report;
– Suite setup, suite teardown;
– Test setup, test teardown;

4. Tests - Robot:
• Test suites with test cases;
• Functional tests using VIRL environment:

– VPP;
– Honeycomb;

• Performance tests using physical testbed environment:
– VPP;
– DPDK-Testpmd;
– DPDK-L3Fwd;
– Honeycomb;
– VPP Container K8s orchestrated topologies;

• Tools:
– Documentation generator;
– Report generator;
– Testbed environment setup ansible playbooks;
– Operational debugging scripts;

6.1.2 Test Lifecycle Abstraction

A well coded test must follow a disciplined abstraction of the test lifecycles that includes setup, con-figuration, test and verification. In addition to improve test execution efficiency, the commmon aspectsof test setup and configuration shared across multiple test cases should be done only once. Translatingthese high-level guidelines into the Robot Framework one arrives to definition of a well coded RF testsfor FD.io CSIT. Anatomy of Good Tests for CSIT:
1. Suite Setup - Suite startup Configuration common to all Test Cases in suite: uses ConfigurationKWs, Verification KWs, StateReport KWs;
2. Test Setup - Test startup Configuration common to multiple Test Cases: uses Configuration KWs,StateReport KWs;
3. Test Case - uses L2 KWs with RF Gherkin style:

• prefixed with {Given} - Verification of Test setup, reading state: uses Configuration KWs, Veri-fication KWs, StateReport KWs;
• prefixed with {When} - Test execution: Configuration KWs, Test KWs;

6.1. Design 237

CSIT REPORT, Release rls1901_3

• prefixed with {Then} - Verification of Test execution, reading state: uses Verification KWs,StateReport KWs;
4. Test Teardown - post Test teardown with Configuration cleanup and Verification common to multi-ple Test Cases - uses: Configuration KWs, Verification KWs, StateReport KWs;
5. Suite Teardown - Suite post-test Configuration cleanup: uses Configuration KWs, Verification KWs,StateReport KWs;

6.1.3 RF Keywords Functional Classification

CSIT RF KWs are classified into the functional categories matching the test lifecycle events describedearlier. All CSIT RF L2 and L1 KWs have been grouped into the following functional categories:
1. Configuration;
2. Test;
3. Verification;
4. StateReport;
5. SuiteSetup;
6. TestSetup;
7. SuiteTeardown;
8. TestTeardown;

6.1.4 RF Keywords Naming Guidelines

Readability counts: “..code is read much more often than it is written.” Hence following a good and con-sistent grammar practice is important when writing RF KeyWords and Tests. All CSIT test cases are codedusing Gherkin style and include only L2 KWs references. L2 KWs are coded using simple style and in-clude L2 KWs, L1 KWs, and L1 python references. To improve readability, the proposal is to use the samegrammar for both RF KW styles, and to formalize the grammar of English sentences used for naming theRF KWs. RF KWs names are short sentences expressing functional description of the command. Theymust follow English sentence grammar in one of the following forms:
1. Imperative - verb-object(s): “Do something”, verb in base form.
2. Declarative - subject–verb–object(s): “Subject does something”, verb in a third-person singularpresent tense form.
3. Affirmative - modal_verb-verb-object(s): “Subject should be something”, “Object should exist”, verb inbase form.
4. Negative - modal_verb-Not-verb-object(s): “Subject should not be something”, “Object should not ex-

ist”, verb in base form.
Passive form MUST NOT be used. However a usage of past participle as an adjective is okay. See usageexamples provided in the Coding guidelines section below. Following sections list applicability of theabove grammar forms to different RF KW categories. Usage examples are provided, both good and bad.

6.1.5 Coding Guidelines

Coding guidelines can be found on Design optimizations wiki page150.
150 https://wiki.fd.io/view/CSIT/Design_Optimizations

238 Chapter 6. CSIT Framework

https://wiki.fd.io/view/CSIT/Design_Optimizations

CSIT REPORT, Release rls1901_3

6.2 Test Naming

6.2.1 Background

CSIT-1901.3 follows a common structured naming convention for all performance and system functionaltests, introduced in CSIT-1701.
The naming should be intuitive for majority of the tests. Complete description of CSIT test naming con-vention is provided on CSIT test naming wiki page151. Below few illustrative examples of the namingusage for test suites across CSIT performance, functional and Honeycomb management test areas.

6.2.2 Naming Convention

The CSIT approach is to use tree naming convention and to encode following testing information intotest suite and test case names:
1. packet network port configuration

• port type, physical or virtual;
• number of ports;
• NIC model, if applicable;
• port-NIC locality, if applicable;

2. packet encapsulations;
3. VPP packet processing

• packet forwarding mode;
• packet processing function(s);

4. packet forwarding path
• if present, network functions (processes, containers, VMs) and their topology within the com-puter;

5. main measured variable, type of test.
Proposed convention is to encode ports and NICs on the left (underlay), followed by outer-most frameheader, then other stacked headers up to the header processed by vSwitch-VPP, then VPP forwardingfunction, then encap on vhost interface, number of vhost interfaces, number of VMs. If chained VMspresent, they get added on the right. Test topology is expected to be symmetric, in other words packetsenter and leave SUT through ports specified on the left of the test name. Here some examples to illustratethe convention followed by the complete legend, and tables mapping the new test filenames to old ones.

6.2.3 Naming Examples

CSIT test suite naming examples (filename.robot) for common tested VPP topologies:
1. Physical port to physical port - a.k.a. NIC-to-NIC, Phy-to-Phy, P2P

• PortNICConfig-WireEncapsulation-PacketForwardingFunction- PacketProcessingFunction1-. . . -
PacketProcessingFunctionN-TestType

• 10ge2p1x520-dot1q-l2bdbasemaclrn-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,dot1q tagged Ethernet, L2 bridge-domain baseline switching with MAC learning, NDRthroughput discovery.
151 https://wiki.fd.io/view/CSIT/csit-test-naming

6.2. Test Naming 239

https://wiki.fd.io/view/CSIT/csit-test-naming

CSIT REPORT, Release rls1901_3

• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-ndrchk.robot => 2 ports of 10GE on Intel x520 NIC,IPv4 VXLAN Ethernet, L2 bridge-domain baseline switching withMAC learning, NDR through-put discovery.
• 10ge2p1x520-ethip4-ip4base-ndrdisc.robot => 2 ports of 10GEon Intel x520NIC, IPv4 baselinerouted forwarding, NDR throughput discovery.
• 10ge2p1x520-ethip6-ip6scale200k-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC, IPv6scaled up routed forwarding, NDR throughput discovery.
• 10ge2p1x520-ethip4-ip4base-iacldstbase-ndrdisc.robot => 2 ports of 10GE on Intel x520 NIC,IPv4 baseline routed forwarding, ingress Access Control Lists baselinematching on destination,NDR throughput discovery.
• 40ge2p1vic1385-ethip4-ip4base-ndrdisc.robot => 2 ports of 40GE on Cisco vic1385 NIC, IPv4baseline routed forwarding, NDR throughput discovery.
• eth2p-ethip4-ip4base-func.robot => 2 ports of Ethernet, IPv4 baseline routed forwarding, func-tional tests.

2. Physical port to VM (or VM chain) to physical port - a.k.a. NIC2VM2NIC, P2V2P,
NIC2VMchain2NIC, P2V2V2P

• PortNICConfig-WireEncapsulation-PacketForwardingFunction- PacketProcessingFunction1-. . . -
PacketProcessingFunctionN-VirtEncapsulation- VirtPortConfig-VMconfig-TestType

• 10ge2p1x520-dot1q-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot => 2 ports of 10GE on Intelx520 NIC, dot1q tagged Ethernet, L2 bridge-domain switching to/from two vhost interfacesand one VM, NDR throughput discovery.
• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-2vhost-1vm-ndrdisc.robot => 2 ports of 10GEon Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from two vhost in-terfaces and one VM, NDR throughput discovery.
• 10ge2p1x520-ethip4vxlan-l2bdbasemaclrn-eth-4vhost-2vm-ndrdisc.robot => 2 ports of 10GEon Intel x520 NIC, IPv4 VXLAN Ethernet, L2 bridge-domain switching to/from four vhost in-terfaces and two VMs, NDR throughput discovery.
• eth2p-ethip4vxlan-l2bdbasemaclrn-eth-2vhost-1vm-func.robot => 2 ports of Ethernet, IPv4VXLAN Ethernet, L2 bridge-domain switching to/from two vhost interfaces and one VM, func-tional tests.

3. API CRUD tests - Create (Write), Read (Retrieve), Update (Modify), Delete (Destroy) operations for
configuration and operational data

• ManagementTestKeyword-ManagementOperation-ManagedFunction1-. . . - ManagedFunctionN-
ManagementAPI1-ManagementAPIN-TestType

• mgmt-cfg-lisp-apivat-func => configuration of LISP with VAT API calls, functional tests.
• mgmt-cfg-l2bd-apihc-apivat-func => configuration of L2 Bridge-Domain with Honeycomb APIand VAT API calls, functional tests.
• mgmt-oper-int-apihcnc-func => reading status and operational data of interface with Honey-comb NetConf API calls, functional tests.
• mgmt-cfg-int-tap-apihcnc-func => configuration of tap interfaces with Honeycomb NetConfAPI calls, functional tests.
• mgmt-notif-int-subint-apihcnc-func => notifications of interface and sub-interface events withHoneycomb NetConf Notifications, functional tests.

For complete description of CSIT test naming convention please refer to CSIT test naming wiki page152.
152 https://wiki.fd.io/view/CSIT/csit-test-naming

240 Chapter 6. CSIT Framework

https://wiki.fd.io/view/CSIT/csit-test-naming

CSIT REPORT, Release rls1901_3

6.3 Presentation and Analytics

6.3.1 Overview

The presentation and analytics layer (PAL) is the fourth layer of CSIT hierarchy. Themodel of presentationand analytics layer consists of four sub-layers, bottom up:
• sL1 - Data - input data to be processed:

– Static content - .rst text files, .svg static figures, and other files stored in the CSIT git repository.
– Data to process - .xml files generated by Jenkins jobs executing tests, stored as robot resultsfiles (output.xml).
– Specification - .yaml filewith themodels of report elements (tables, plots, layout, . . .) generatedby this tool. There is also the configuration of the tool and the specification of input data (jobsand builds).

• sL2 - Data processing
– The data are read from the specified input files (.xml) and stored as multi-indexed pan-das.Series153.
– This layer provides also interface to input data and filtering of the input data.

• sL3 - Data presentation - This layer generates the elements specified in the specification file:
– Tables: .csv files linked to static .rst files.
– Plots: .html files generated using plot.ly linked to static .rst files.

• sL4 - Report generation - Sphinx generates required formats and versions:
– formats: html, pdf
– versions: minimal, full (TODO: define the names and scope of versions)

.YAML

Specification (CSIT gerrit)

Data

.RST

Static content (CSIT gerrit)

.ZIP (.XML)

Data to process (Jenkins)

pandas
Data model in JSON

Specification, Input data (Pandas.Series)

Data processing

Data presentation

Plots

plot.ly → .html

Files

.RST

Tables

Pandas → .csv

Report generation

Sphinx

.html / .pdf (then stored in nexus)

Jenkins plots

Jenkins plot
plugin

.html

sL1

sL2

sL3

sL4

Read files Read files Read files Read files

Read filesRead filesRead files

Read files Read files

Python calls Python calls Python calls

153 https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

6.3. Presentation and Analytics 241

https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html
https://pandas.pydata.org/pandas-docs/stable/generated/pandas.Series.html

CSIT REPORT, Release rls1901_3

6.3.2 Data

Report Specification

The report specification file defines which data is used and which outputs are generated. It is humanreadable and structured. It is easy to add / remove / change items. The specification includes:
• Specification of the environment.
• Configuration of debug mode (optional).
• Specification of input data (jobs, builds, files, . . .).
• Specification of the output.
• What and how is generated: - What: plots, tables. - How: specification of all properties and param-eters.
• .yaml format.

Structure of the specification file

The specification file is organized as a list of dictionaries distinguished by the type:
-

type: "environment"
-

type: "configuration"
-

type: "debug"
-

type: "static"
-

type: "input"
-

type: "output"
-

type: "table"
-

type: "plot"
-

type: "file"

Each type represents a section. The sections “environment”, “debug”, “static”, “input” and “output” arelisted only once in the specification; “table”, “file” and “plot” can be there multiple times.
Sections “debug”, “table”, “file” and “plot” are optional.
Table(s), files(s) and plot(s) are referred as “elements” in this text. It is possible to define and implementother elements if needed.
Section: Environment

This section has the following parts:
• type: “environment” - says that this is the section “environment”.
• configuration - configuration of the PAL.
• paths - paths used by the PAL.
• urls - urls pointing to the data sources.
• make-dirs - a list of the directories to be created by the PAL while preparing the environment.

242 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

• remove-dirs - a list of the directories to be removed while cleaning the environment.
• build-dirs - a list of the directories where the results are stored.

The structure of the section “Environment” is as follows (example):
-

type: "environment"
configuration:

Debug mode:
- Skip:
- Download of input data files
- Do:
- Read data from given zip / xml files
- Set the configuration as it is done in normal mode
If the section "type: debug" is missing, CFG[DEBUG] is set to 0.
CFG[DEBUG]: 0

paths:
Top level directories:
Working directory
DIR[WORKING]: "_tmp"
Build directories
DIR[BUILD,HTML]: "_build"
DIR[BUILD,LATEX]: "_build_latex"

Static .rst files
DIR[RST]: "../../../docs/report"

Working directories
Input data files (.zip, .xml)
DIR[WORKING,DATA]: "{DIR[WORKING]}/data"
Static source files from git
DIR[WORKING,SRC]: "{DIR[WORKING]}/src"
DIR[WORKING,SRC,STATIC]: "{DIR[WORKING,SRC]}/_static"

Static html content
DIR[STATIC]: "{DIR[BUILD,HTML]}/_static"
DIR[STATIC,VPP]: "{DIR[STATIC]}/vpp"
DIR[STATIC,DPDK]: "{DIR[STATIC]}/dpdk"
DIR[STATIC,ARCH]: "{DIR[STATIC]}/archive"

Detailed test results
DIR[DTR]: "{DIR[WORKING,SRC]}/detailed_test_results"
DIR[DTR,PERF,DPDK]: "{DIR[DTR]}/dpdk_performance_results"
DIR[DTR,PERF,VPP]: "{DIR[DTR]}/vpp_performance_results"
DIR[DTR,PERF,HC]: "{DIR[DTR]}/honeycomb_performance_results"
DIR[DTR,FUNC,VPP]: "{DIR[DTR]}/vpp_functional_results"
DIR[DTR,FUNC,HC]: "{DIR[DTR]}/honeycomb_functional_results"
DIR[DTR,FUNC,NSHSFC]: "{DIR[DTR]}/nshsfc_functional_results"
DIR[DTR,PERF,VPP,IMPRV]: "{DIR[WORKING,SRC]}/vpp_performance_tests/performance_improvements"

Detailed test configurations
DIR[DTC]: "{DIR[WORKING,SRC]}/test_configuration"
DIR[DTC,PERF,VPP]: "{DIR[DTC]}/vpp_performance_configuration"
DIR[DTC,FUNC,VPP]: "{DIR[DTC]}/vpp_functional_configuration"

Detailed tests operational data
DIR[DTO]: "{DIR[WORKING,SRC]}/test_operational_data"
DIR[DTO,PERF,VPP]: "{DIR[DTO]}/vpp_performance_operational_data"

.css patch file to fix tables generated by Sphinx
DIR[CSS_PATCH_FILE]: "{DIR[STATIC]}/theme_overrides.css"

(continues on next page)

6.3. Presentation and Analytics 243

CSIT REPORT, Release rls1901_3

(continued from previous page)
DIR[CSS_PATCH_FILE2]: "{DIR[WORKING,SRC,STATIC]}/theme_overrides.css"

urls:
URL[JENKINS,CSIT]: "https://jenkins.fd.io/view/csit/job"
URL[JENKINS,HC]: "https://jenkins.fd.io/view/hc2vpp/job"

make-dirs:
List the directories which are created while preparing the environment.
All directories MUST be defined in "paths" section.
- "DIR[WORKING,DATA]"
- "DIR[STATIC,VPP]"
- "DIR[STATIC,DPDK]"
- "DIR[STATIC,ARCH]"
- "DIR[BUILD,LATEX]"
- "DIR[WORKING,SRC]"
- "DIR[WORKING,SRC,STATIC]"

remove-dirs:
List the directories which are deleted while cleaning the environment.
All directories MUST be defined in "paths" section.
#- "DIR[BUILD,HTML]"

build-dirs:
List the directories where the results (build) is stored.
All directories MUST be defined in "paths" section.
- "DIR[BUILD,HTML]"
- "DIR[BUILD,LATEX]"

It is possible to use defined items in the definition of other items, e.g.:
DIR[WORKING,DATA]: "{DIR[WORKING]}/data"

will be automatically changed to
DIR[WORKING,DATA]: "_tmp/data"

Section: Configuration

This section specifies the groups of parameters which are repeatedly used in the elements defined laterin the specification file. It has the following parts:
• data sets - Specification of data sets used later in element’s specifications to define the input data.
• plot layouts - Specification of plot layouts used later in plots’ specifications to define the plot layout.

The structure of the section “Configuration” is as follows (example):
-

type: "configuration"
data-sets:

plot-vpp-throughput-latency:
csit-vpp-perf-1710-all:
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18

(continues on next page)

244 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

(continued from previous page)
- 19
- 20

vpp-perf-results:
csit-vpp-perf-1710-all:
- 20
- 23

plot-layouts:
plot-throughput:
xaxis:

autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ".4s"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Packets Per Second [pps]"
zeroline: False

boxmode: "group"
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The definitions from this sections are used in the elements, e.g.:
-

type: "plot"
title: "VPP Performance 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_performance_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc"
data:

"plot-vpp-throughput-latency"
filter: "'64B' and ('BASE' or 'SCALE') and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN

→˓' or 'L2XCFWD') and not 'VHOST'"
parameters:

(continues on next page)

6.3. Presentation and Analytics 245

CSIT REPORT, Release rls1901_3

(continued from previous page)
- "throughput"
- "parent"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
layout:
"plot-throughput"

Section: Debug mode

This section is optional as it configures the debug mode. It is used if one does not want to download inputdata files and use local files instead.
If the debug mode is configured, the “input” section is ignored.
This section has the following parts:

• type: “debug” - says that this is the section “debug”.
• general:

– input-format - xml or zip.
– extract - if “zip” is defined as the input format, this file is extracted from the zip file, otherwisethis parameter is ignored.

• builds - list of builds from which the data is used. Must include a job name as a key and then a listof builds and their output files.
The structure of the section “Debug” is as follows (example):
-

type: "debug"
general:

input-format: "zip" # zip or xml
extract: "robot-plugin/output.xml" # Only for zip

builds:
The files must be in the directory DIR[WORKING,DATA]
csit-dpdk-perf-1707-all:
-
build: 10
file: "csit-dpdk-perf-1707-all__10.xml"

-
build: 9
file: "csit-dpdk-perf-1707-all__9.xml"

csit-nsh_sfc-verify-func-1707-ubuntu1604-virl:
-

build: 2
file: "csit-nsh_sfc-verify-func-1707-ubuntu1604-virl-2.xml"

csit-vpp-functional-1707-ubuntu1604-virl:
-

build: lastSuccessfulBuild
file: "csit-vpp-functional-1707-ubuntu1604-virl-lastSuccessfulBuild.xml"

hc2vpp-csit-integration-1707-ubuntu1604:
-

build: lastSuccessfulBuild
file: "hc2vpp-csit-integration-1707-ubuntu1604-lastSuccessfulBuild.xml"

csit-vpp-perf-1707-all:
-

(continues on next page)

246 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

(continued from previous page)
build: 16
file: "csit-vpp-perf-1707-all__16__output.xml"

-
build: 17
file: "csit-vpp-perf-1707-all__17__output.xml"

Section: Static

This section defines the static content which is stored in git and will be used as a source to generate thereport.
This section has these parts:

• type: “static” - says that this section is the “static”.
• src-path - path to the static content.
• dst-path - destination path where the static content is copied and then processed.

-
type: "static"
src-path: "{DIR[RST]}"
dst-path: "{DIR[WORKING,SRC]}"

Section: Input

This section defines the data used to generate elements. It is mandatory if the debug mode is not used.
This section has the following parts:

• type: “input” - says that this section is the “input”.
• general - parameters common to all builds:

– file-name: file to be downloaded.
– file-format: format of the downloaded file, “.zip” or “.xml” are supported.
– download-path: path to be added to url pointing to the file, e.g.:“{job}/{build}/robot/report/zip/{filename}”; {job}, {build} and {filename} are replaced byproper values defined in this section.
– extract: file to be extracted from downloaded zip file, e.g.: “output.xml”; if xml file is down-loaded, this parameter is ignored.

• builds - list of jobs (keys) and numbers of builds which output data will be downloaded.
The structure of the section “Input” is as follows (example from 17.07 report):
-

type: "input" # Ignored in debug mode
general:

file-name: "robot-plugin.zip"
file-format: ".zip"
download-path: "{job}/{build}/robot/report/*zip*/{filename}"
extract: "robot-plugin/output.xml"

builds:
csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14

(continues on next page)

6.3. Presentation and Analytics 247

CSIT REPORT, Release rls1901_3

(continued from previous page)
- 15
- 16
- 17
- 18
- 19
- 21
- 22
csit-dpdk-perf-1707-all:
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
csit-vpp-functional-1707-ubuntu1604-virl:
- lastSuccessfulBuild
hc2vpp-csit-perf-master-ubuntu1604:
- 8
- 9
hc2vpp-csit-integration-1707-ubuntu1604:
- lastSuccessfulBuild
csit-nsh_sfc-verify-func-1707-ubuntu1604-virl:
- 2

Section: Output

This section specifies which format(s) will be generated (html, pdf) and which versions will be generatedfor each format.
This section has the following parts:

• type: “output” - says that this section is the “output”.
• format: html or pdf.
• version: defined for each format separately.

The structure of the section “Output” is as follows (example):
-

type: "output"
format:

html:
- full
pdf:
- full
- minimal

TODO: define the names of versions
Content of “minimal” version

TODO: define the name and content of this version

248 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

Section: Table

This section defines a table to be generated. There can be 0 or more “table” sections.
This section has the following parts:

• type: “table” - says that this section defines a table.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the table. The other parameters in this section mustprovide all information needed by the used algorithm.
• template: (optional) a .csv file used as a template while generating the table.
• output-file-ext: extension of the output file.
• output-file: file which the table will be written to.
• columns: specification of table columns:

– title: The title used in the table header.
– data: Specification of the data, it has two parts - command and arguments:

* command:
· template - take the data from template, arguments:
· number of column in the template.
· data - take the data from the input data, arguments:
· jobs and builds which data will be used.
· operation - performs an operation with the data already in the table, arguments:
· operation to be done, e.g.: mean, stdev, relative_change (compute the relative changebetween two columns) and display number of data samples ~= number of test jobs.The operations are implemented in the utils.py TODO: Move from utils,py to e.g. op-erations.py
· numbers of columns which data will be used (optional).

• data: Specify the jobs and builds which data is used to generate the table.
• filter: filter based on tags applied on the input data, if “template” is used, filtering is based on thetemplate.
• parameters: Only these parameters will be put to the output data structure.

The structure of the section “Table” is as follows (example of “table_performance_improvements”):
-

type: "table"
title: "Performance improvements"
algorithm: "table_performance_improvements"
template: "{DIR[DTR,PERF,VPP,IMPRV]}/tmpl_performance_improvements.csv"
output-file-ext: ".csv"
output-file: "{DIR[DTR,PERF,VPP,IMPRV]}/performance_improvements"
columns:
-

title: "VPP Functionality"
data: "template 1"

-
title: "Test Name"
data: "template 2"

-
title: "VPP-16.09 mean [Mpps]"

(continues on next page)

6.3. Presentation and Analytics 249

CSIT REPORT, Release rls1901_3

(continued from previous page)
data: "template 3"

-
title: "VPP-17.01 mean [Mpps]"
data: "template 4"

-
title: "VPP-17.04 mean [Mpps]"
data: "template 5"

-
title: "VPP-17.07 mean [Mpps]"
data: "data csit-vpp-perf-1707-all mean"

-
title: "VPP-17.07 stdev [Mpps]"
data: "data csit-vpp-perf-1707-all stdev"

-
title: "17.04 to 17.07 change [%]"
data: "operation relative_change 5 4"

data:
csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter: "template"
parameters:
- "throughput"

Example of “table_details” which generates “Detailed Test Results - VPP Performance Results”:
-

type: "table"
title: "Detailed Test Results - VPP Performance Results"
algorithm: "table_details"
output-file-ext: ".csv"
output-file: "{DIR[WORKING]}/vpp_performance_results"
columns:
-

title: "Name"
data: "data test_name"

-
title: "Documentation"
data: "data test_documentation"

-
title: "Status"
data: "data test_msg"

data:
csit-vpp-perf-1707-all:
- 17

filter: "all"
parameters:
- "parent"
- "doc"
- "msg"

Example of “table_details” which generates “Test configuration - VPP Performance Test Configs”:

250 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

-
type: "table"
title: "Test configuration - VPP Performance Test Configs"
algorithm: "table_details"
output-file-ext: ".csv"
output-file: "{DIR[WORKING]}/vpp_test_configuration"
columns:
-

title: "Name"
data: "data name"

-
title: "VPP API Test (VAT) Commands History - Commands Used Per Test Case"
data: "data show-run"

data:
csit-vpp-perf-1707-all:
- 17

filter: "all"
parameters:
- "parent"
- "name"
- "show-run"

Section: Plot

This section defines a plot to be generated. There can be 0 or more “plot” sections.
This section has these parts:

• type: “plot” - says that this section defines a plot.
• title: Plot title used in the logs. Title which is displayed is in the section “layout”.
• output-file-type: format of the output file.
• output-file: file which the plot will be written to.
• algorithm: Algorithm used to generate the plot. The other parameters in this section must provideall information needed by plot.ly to generate the plot. For example:

– traces
– layout
– These parameters are transparently passed to plot.ly.

• data: Specify the jobs and numbers of builds which data is used to generate the plot.
• filter: filter applied on the input data.
• parameters: Only these parameters will be put to the output data structure.

The structure of the section “Plot” is as follows (example of a plot showing throughput in a chart box-with-whiskers):
-

type: "plot"
title: "VPP Performance 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_performance_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc"
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13 (continues on next page)

6.3. Presentation and Analytics 251

CSIT REPORT, Release rls1901_3

(continued from previous page)
- 14
- 15
- 16
- 17
- 18
- 19
- 21

Keep this formatting, the filter is enclosed with " (quotation mark) and
each tag is enclosed with ' (apostrophe).
filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD

→˓') and not 'VHOST'"
parameters:
- "throughput"
- "parent"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ".4s"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Packets Per Second [pps]"
zeroline: False

boxmode: "group"
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True
legend:

orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing latency in a box chart):

252 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

-
type: "plot"
title: "VPP Latency 64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_latency_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/64B-1t1c-l2-sel1-ndrdisc-lat50"
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter: "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD
→˓') and not 'VHOST'"
parameters:
- "latency"
- "parent"
traces:

boxmean: False
layout:

title: "64B-1t1c-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
xaxis:
autorange: True
autotick: False
fixedrange: False
gridcolor: "rgb(238, 238, 238)"
linecolor: "rgb(238, 238, 238)"
linewidth: 1
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
tickmode: "linear"
title: "Indexed Test Cases"
zeroline: False

yaxis:
gridcolor: "rgb(238, 238, 238)'"
hoverformat: ""
linecolor: "rgb(238, 238, 238)"
linewidth: 1
range: []
showgrid: True
showline: True
showticklabels: True
tickcolor: "rgb(238, 238, 238)"
title: "Latency min/avg/max [uSec]"
zeroline: False

boxmode: "group"
boxgroupgap: 0.5
autosize: False
margin:

t: 50
b: 20
l: 50
r: 20

showlegend: True

(continues on next page)

6.3. Presentation and Analytics 253

CSIT REPORT, Release rls1901_3

(continued from previous page)
legend:

orientation: "h"
width: 700
height: 1000

The structure of the section “Plot” is as follows (example of a plot showing VPP HTTP server performancein a box chart with pre-defined data “plot-vpp-httlp-server-performance” set and plot layout “plot-cps”):
-

type: "plot"
title: "VPP HTTP Server Performance"
algorithm: "plot_http_server_performance_box"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/http-server-performance-cps"
data:

"plot-vpp-httlp-server-performance"
Keep this formatting, the filter is enclosed with " (quotation mark) and
each tag is enclosed with ' (apostrophe).
filter: "'HTTP' and 'TCP_CPS'"
parameters:
- "result"
- "name"
traces:

hoverinfo: "x+y"
boxpoints: "outliers"
whiskerwidth: 0

layout:
title: "VPP HTTP Server Performance"
layout:
"plot-cps"

Section: file

This section defines a file to be generated. There can be 0 or more “file” sections.
This section has the following parts:

• type: “file” - says that this section defines a file.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the file. The other parameters in this section mustprovide all information needed by the used algorithm.
• output-file-ext: extension of the output file.
• output-file: file which the file will be written to.
• file-header: The header of the generated .rst file.
• dir-tables: The directory with the tables.
• data: Specify the jobs and builds which data is used to generate the table.
• filter: filter based on tags applied on the input data, if “all” is used, no filtering is done.
• parameters: Only these parameters will be put to the output data structure.
• chapters: the hierarchy of chapters in the generated file.
• start-level: the level of the the top-level chapter.

The structure of the section “file” is as follows (example):

254 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

-
type: "file"
title: "VPP Performance Results"
algorithm: "file_test_results"
output-file-ext: ".rst"
output-file: "{DIR[DTR,PERF,VPP]}/vpp_performance_results"
file-header: "\n.. |br| raw:: html\n\n
\n\n\n.. |prein| raw:: html\n\n <pre>\n\n\n..␣

→˓|preout| raw:: html\n\n </pre>\n\n"
dir-tables: "{DIR[DTR,PERF,VPP]}"
data:

csit-vpp-perf-1707-all:
- 22

filter: "all"
parameters:
- "name"
- "doc"
- "level"
data-start-level: 2 # 0, 1, 2, ...
chapters-start-level: 2 # 0, 1, 2, ...

Static content

• Manually created / edited files.
• .rst files, static .csv files, static pictures (.svg), . . .
• Stored in CSIT git repository.

No more details about the static content in this document.
Data to process

The PAL processes tests results and other information produced by Jenkins jobs. The data are now storedas robot results in Jenkins (TODO: store the data in nexus) either as .zip and / or .xml files.

6.3.3 Data processing

As the first step, the data are downloaded and stored locally (typically on a Jenkins slave). If .zip files areused, the given .xml files are extracted for further processing.
Parsing of the .xml files is performed by a class derived from “robot.api.ResultVisitor”, only necessarymethods are overridden. All and only necessary data is extracted from .xml file and stored in a structuredform.
The parsed data are stored as the multi-indexed pandas.Series data type. Its structure is as follows:
<job name>

<build>
<metadata>
<suites>
<tests>

“job name”, “build”, “metadata”, “suites”, “tests” are indexes to access the data. For example:
data =

job 1 name:
build 1:

metadata: metadata

(continues on next page)

6.3. Presentation and Analytics 255

CSIT REPORT, Release rls1901_3

(continued from previous page)
suites: suites
tests: tests

...
build N:

metadata: metadata
suites: suites
tests: tests

...
job M name:

build 1:
metadata: metadata
suites: suites
tests: tests

...
build N:

metadata: metadata
suites: suites
tests: tests

Using indexes data[“job 1 name”][“build 1”][“tests”] (e.g.: data[“csit-vpp-perf-1704-all”][“17”][“tests”]) weget a list of all tests with all tests data.
Data will not be accessible directly using indexes, but using getters and filters.
Structure of metadata:

"metadata": {
"version": "VPP version",
"job": "Jenkins job name"
"build": "Information about the build"

},

Structure of suites:

"suites": {
"Suite name 1": {

"doc": "Suite 1 documentation"
"parent": "Suite 1 parent"

}
"Suite name N": {

"doc": "Suite N documentation"
"parent": "Suite N parent"

}

Structure of tests:
Performance tests:
"tests": {

"ID": {
"name": "Test name",
"parent": "Name of the parent of the test",
"doc": "Test documentation"
"msg": "Test message"
"tags": ["tag 1", "tag 2", "tag n"],
"type": "PDR" | "NDR",
"throughput": {

"value": int,
"unit": "pps" | "bps" | "percentage"

},
"latency": {

"direction1": {

(continues on next page)

256 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

(continued from previous page)
"100": {

"min": int,
"avg": int,
"max": int

},
"50": { # Only for NDR

"min": int,
"avg": int,
"max": int

},
"10": { # Only for NDR

"min": int,
"avg": int,
"max": int

}
},
"direction2": {

"100": {
"min": int,
"avg": int,
"max": int

},
"50": { # Only for NDR

"min": int,
"avg": int,
"max": int

},
"10": { # Only for NDR

"min": int,
"avg": int,
"max": int

}
}

},
"lossTolerance": "lossTolerance" # Only for PDR
"vat-history": "DUT1 and DUT2 VAT History"
},
"show-run": "Show Run"

},
"ID" {

next test
}

Functional tests:
"tests": {

"ID": {
"name": "Test name",
"parent": "Name of the parent of the test",
"doc": "Test documentation"
"msg": "Test message"
"tags": ["tag 1", "tag 2", "tag n"],
"vat-history": "DUT1 and DUT2 VAT History"
"show-run": "Show Run"
"status": "PASS" | "FAIL"

},
"ID" {

next test
}

}

Note: ID is the lowercase full path to the test.
6.3. Presentation and Analytics 257

CSIT REPORT, Release rls1901_3

Data filtering

The first step when generating an element is getting the data needed to construct the element. The dataare filtered from the processed input data.
The data filtering is based on:

• job name(s).
• build number(s).
• tag(s).
• required data - only this data is included in the output.

WARNING: The filtering is based on tags, so be careful with tagging.
For example, the element which specification includes:
data:

csit-vpp-perf-1707-all:
- 9
- 10
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 21

filter:
- "'64B' and 'BASE' and 'NDRDISC' and '1T1C' and ('L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and␣

→˓not 'VHOST'"

will be constructed using data from the job “csit-vpp-perf-1707-all”, for all listed builds and the tests withthe list of tags matching the filter conditions.
The output data structure for filtered test data is:
- job 1

- build 1
- test 1
- parameter 1
- parameter 2
...
- parameter n

...
- test n
...

...
- build n

...
- job n

Data analytics

Data analytics part implements:
• methods to compute statistical data from the filtered input data.
• trending.

258 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

Throughput Speedup Analysis - Multi-Core with Multi-Threading

Throughput Speedup Analysis (TSA) calculates throughput speedup ratios for tested 1-, 2- and 4-coremulti-threaded VPP configurations using the following formula:
N_core_throughput

N_core_throughput_speedup = -----------------
1_core_throughput

Multi-core throughput speedup ratios are plotted in grouped bar graphs for throughput tests with64B/78B frame size, with number of cores on X-axis and speedup ratio on Y-axis.
For better comparison multiple test results’ data sets are plotted per each graph:

• graph type: grouped bars;
• graph X-axis: (testcase index, number of cores);
• graph Y-axis: speedup factor.

Subset of existing performance tests is covered by TSA graphs.
Model for TSA:

-
type: "plot"
title: "TSA: 64B-*-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
algorithm: "plot_throughput_speedup_analysis"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/10ge2p1x520-64B-l2-tsa-ndrdisc"
data:

"plot-throughput-speedup-analysis"
filter: "'NIC_Intel-X520-DA2' and '64B' and 'BASE' and 'NDRDISC' and ('L2BDMACSTAT' or 'L2BDMACLRN

→˓' or 'L2XCFWD') and not 'VHOST'"
parameters:
- "throughput"
- "parent"
- "tags"
layout:

title: "64B-*-(eth|dot1q|dot1ad)-(l2xcbase|l2bdbasemaclrn)-ndrdisc"
layout:
"plot-throughput-speedup-analysis"

Comparison of results from two sets of the same test executions

This algorithm enables comparison of results coming from two sets of the same test executions. It is usedto quantify performance changes across all tests after test environment changes e.g. Operating Systemupgrades/patches, Hardware changes.
It is assumed that each set of test executions includes multiple runs of the same tests, 10 or more, toverify test results repeatibility and to yield statistically meaningful results data.
Comparison results are presented in a table with a specified number of the best and the worst relativechanges between the two sets. Following table columns are defined:

• name of the test;
• throughput mean values of the reference set;
• throughput standard deviation of the reference set;
• throughput mean values of the set to compare;
• throughput standard deviation of the set to compare;

6.3. Presentation and Analytics 259

CSIT REPORT, Release rls1901_3

• relative change of the mean values.
The model
The model specifies:

• type: “table” - means this section defines a table.
• title: Title of the table.
• algorithm: Algorithm which is used to generate the table. The other parameters in this section mustprovide all information needed by the used algorithm.
• output-file-ext: Extension of the output file.
• output-file: File which the table will be written to.
• reference - the builds which are used as the reference for comparison.
• compare - the builds which are compared to the reference.
• data: Specify the sources, jobs and builds, providing data for generating the table.
• filter: Filter based on tags applied on the input data, if “template” is used, filtering is based on thetemplate.
• parameters: Only these parameters will be put to the output data structure.
• nr-of-tests-shown: Number of the best and the worst tests presented in the table. Use 0 (zero) topresent all tests.

Example:

-
type: "table"
title: "Performance comparison"
algorithm: "table_performance_comparison"
output-file-ext: ".csv"
output-file: "{DIR[DTR,PERF,VPP,IMPRV]}/vpp_performance_comparison"
reference:

title: "csit-vpp-perf-1801-all - 1"
data:
csit-vpp-perf-1801-all:
- 1
- 2

compare:
title: "csit-vpp-perf-1801-all - 2"
data:
csit-vpp-perf-1801-all:
- 1
- 2

data:
"vpp-perf-comparison"

filter: "all"
parameters:
- "name"
- "parent"
- "throughput"
nr-of-tests-shown: 20

Advanced data analytics

In the future advanced data analytics (ADA) will be added to analyze the telemetry data collected fromSUT telemetry sources and correlate it to performance test results.
TODO

260 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

• describe the concept of ADA.
• add specification.

6.3.4 Data presentation

Generates the plots and tables according to the report models per specification file. The elements aregenerated using algorithms and data specified in their models.
Tables

• tables are generated by algorithms implemented in PAL, the model includes the algorithm and allnecessary information.
• output format: csv
• generated tables are stored in specified directories and linked to .rst files.

Plots

• plot.ly154 is currently used to generate plots, the model includes the type of plot and all the neces-sary information to render it.
• output format: html.
• generated plots are stored in specified directories and linked to .rst files.

6.3.5 Report generation

Report is generated using Sphinx and Read_the_Docs template. PAL generates html and pdf formats. Itis possible to define the content of the report by specifying the version (TODO: define the names andcontent of versions).
The process

1. Read the specification.
2. Read the input data.
3. Process the input data.
4. For element (plot, table, file) defined in specification:

(a) Get the data needed to construct the element using a filter.
(b) Generate the element.
(c) Store the element.

5. Generate the report.
6. Store the report (Nexus).

The process is model driven. The elements’ models (tables, plots, files and report itself) are defined in thespecification file. Script reads the elements’ models from specification file and generates the elements.
It is easy to add elements to be generated in the report. If a new type of an element is required, only anew algorithm needs to be implemented and integrated.
154 https://plot.ly/

6.3. Presentation and Analytics 261

https://plot.ly/

CSIT REPORT, Release rls1901_3

6.3.6 Continuous Performance Measurements and Trending

Performance analysis and trending execution sequence:

CSIT PA runs performance analysis, change detection and trending using specified trend analysis metricsover the rolling window of last <N> sets of historical measurement data. PA is defined as follows:
1. PA job triggers:

(a) By PT job at its completion.
(b) Manually from Jenkins UI.

2. Download and parse archived historical data and the new data:
(a) New data from latest PT job is evaluated against the rolling window of <N> sets of historicaldata.
(b) Download RF output.xml files and compressed archived data.
(c) Parse out the data filtering test cases listed in PA specification (part of CSIT PAL specificationfile).

3. Calculate trend metrics for the rolling window of <N> sets of historical data:
(a) Calculate quartiles Q1, Q2, Q3.
(b) Trim outliers using IQR.
(c) Calculate TMA and TMSD.
(d) Calculate normal trending range per test case based on TMA and TMSD.

4. Evaluate new test data against trend metrics:
(a) If within the range of (TMA +/- 3*TMSD) => Result = Pass, Reason = Normal.
(b) If below the range => Result = Fail, Reason = Regression.
(c) If above the range => Result = Pass, Reason = Progression.

5. Generate and publish results
(a) Relay evaluation result to job result.
(b) Generate a new set of trend analysis summary graphs and drill-down graphs.

i. Summary graphs to include measured values with Normal, Progression and Regressionmarkers. MM shown in the background if possible.
ii. Drill-down graphs to include MM, TMA and TMSD.

(c) Publish trend analysis graphs in html format on https://docs.fd.io/csit/master/trending/.
Parameters to specify:

General section - parameters common to all plots:

• type: “cpta”;
• title: The title of this section;
• output-file-type: only “.html” is supported;
• output-file: path where the generated files will be stored.

Plots section:

• plot title;
• output file name;

262 Chapter 6. CSIT Framework

https://docs.fd.io/csit/master/trending/

CSIT REPORT, Release rls1901_3

• input data for plots;
– job to be monitored - the Jenkins job which results are used as input data for this test;
– builds used for trending plot(s) - specified by a list of build numbers or by a range of buildsdefined by the first and the last build number;

• tests to be displayed in the plot defined by a filter;
• list of parameters to extract from the data;
• plot layout

Example:

-
type: "cpta"
title: "Continuous Performance Trending and Analysis"
output-file-type: ".html"
output-file: "{DIR[STATIC,VPP]}/cpta"
plots:

- title: "VPP 1T1C L2 64B Packet Throughput - Trending"
output-file-name: "l2-1t1c-x520"
data: "plot-performance-trending-vpp"
filter: "'NIC_Intel-X520-DA2' and 'MRR' and '64B' and ('BASE' or 'SCALE') and '1T1C' and (

→˓'L2BDMACSTAT' or 'L2BDMACLRN' or 'L2XCFWD') and not 'VHOST' and not 'MEMIF'"
parameters:
- "result"
layout: "plot-cpta-vpp"

- title: "DPDK 4T4C IMIX MRR Trending"
output-file-name: "dpdk-imix-4t4c-xl710"
data: "plot-performance-trending-dpdk"
filter: "'NIC_Intel-XL710' and 'IMIX' and 'MRR' and '4T4C' and 'DPDK'"
parameters:
- "result"
layout: "plot-cpta-dpdk"

The Dashboard

Performance dashboard tables provide the latest VPP throughput trend, trend compliance and detectedanomalies, all on a per VPP test case basis. The Dashboard is generated as three tables for 1t1c, 2t2c and4t4c MRR tests.
At first, the .csv tables are generated (only the table for 1t1c is shown):
-

type: "table"
title: "Performance trending dashboard"
algorithm: "table_performance_trending_dashboard"
output-file-ext: ".csv"
output-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c"
data: "plot-performance-trending-all"
filter: "'MRR' and '1T1C'"
parameters:
- "name"
- "parent"
- "result"
ignore-list:
- "tests.vpp.perf.l2.10ge2p1x520-eth-l2bdscale1mmaclrn-mrr.tc01-64b-1t1c-eth-l2bdscale1mmaclrn-

→˓ndrdisc"
outlier-const: 1.5

(continues on next page)

6.3. Presentation and Analytics 263

CSIT REPORT, Release rls1901_3

(continued from previous page)
window: 14
evaluated-window: 14
long-trend-window: 180

Then, html tables stored inside .rst files are generated:
-

type: "table"
title: "HTML performance trending dashboard 1t1c"
algorithm: "table_performance_trending_dashboard_html"
input-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c.csv"
output-file: "{DIR[STATIC,VPP]}/performance-trending-dashboard-1t1c.rst"

6.3.7 Root Cause Analysis

Root Cause Analysis (RCA) by analysing archived performance results – re-analyse available data for spec-ified:
• range of jobs builds,
• set of specific tests and
• PASS/FAIL criteria to detect performance change.

In addition, PAL generates trending plots to show performance over the specified time interval.
Root Cause Analysis - Option 1: Analysing Archived VPP Results

It can be used to speed-up the process, or when the existing data is sufficient. In this case, PAL usesexisting data saved in Nexus, searches for performance degradations and generates plots to show per-formance over the specified time interval for the selected tests.
Execution Sequence

1. Download and parse archived historical data and the new data.
2. Calculate trend metrics.
3. Find regression / progression.
4. Generate and publish results:

(a) Summary graphs to include measured values with Progression and Regression markers.
(b) List the DUT build(s) where the anomalies were detected.

CSIT PAL Specification

• What to test:
– first build (Good); specified by the Jenkins job name and the build number
– last build (Bad); specified by the Jenkins job name and the build number
– step (1..n).

• Data:
– tests of interest; list of tests (full name is used) which results are used

Example:

264 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

TODO

6.3.8 API

List of modules, classes, methods and functions

specification_parser.py

class Specification

Methods:
read_specification
set_input_state
set_input_file_name

Getters:
specification
environment
debug
is_debug
input
builds
output
tables
plots
files
static

input_data_parser.py

class InputData

Methods:
read_data
filter_data

Getters:
data
metadata
suites
tests

environment.py

Functions:
clean_environment

class Environment

Methods:
set_environment

Getters:
environment

input_data_files.py

(continues on next page)

6.3. Presentation and Analytics 265

CSIT REPORT, Release rls1901_3

(continued from previous page)
Functions:

download_data_files
unzip_files

generator_tables.py

Functions:
generate_tables

Functions implementing algorithms to generate particular types of
tables (called by the function "generate_tables"):

table_details
table_performance_improvements

generator_plots.py

Functions:
generate_plots

Functions implementing algorithms to generate particular types of
plots (called by the function "generate_plots"):

plot_performance_box
plot_latency_box

generator_files.py

Functions:
generate_files

Functions implementing algorithms to generate particular types of
files (called by the function "generate_files"):

file_test_results

report.py

Functions:
generate_report

Functions implementing algorithms to generate particular types of
report (called by the function "generate_report"):

generate_html_report
generate_pdf_report

Other functions called by the function "generate_report":
archive_input_data
archive_report

266 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

PAL functional diagram

Specification
.YAML

Data to process
.xml

Static content
.rst

read_specification read_data

Specification Input data

filter_data filter_data

generate_files

Tables Plots

Files

generate_report

Report

generate_tables generate_plots

sL1 - Data

sL2 - Data
processing

sL3 - Data
presentation

sL4 - Report
generation

How to add an element

Element can be added by adding it’s model to the specification file. If the element is to be generated byan existing algorithm, only it’s parameters must be set.
If a brand new type of element needs to be added, also the algorithm must be implemented. Elementgeneration algorithms are implemented in the files with names starting with “generator” prefix. The nameof the function implementing the algorithm and the name of algorithm in the specification file have to bethe same.

6.3. Presentation and Analytics 267

CSIT REPORT, Release rls1901_3

6.4 CSIT RF Tags Descriptions

All CSIT test cases are labelled with Robot Framework tags used to allow for easy test case type identi-fication, test case grouping and selection for execution. Following sections list currently used CSIT TAGsand their documentation based on the content of tag documentation rst file155.

6.4.1 Testbed Topology Tags

2_NODE_DOUBLE_LINK_TOPO

2 nodes connected in a circular topology with two links interconnecting the devices.
2_NODE_SINGLE_LINK_TOPO

2 nodes connected in a circular topology with at least one link interconnecting devices.
3_NODE_DOUBLE_LINK_TOPO

3 nodes connected in a circular topology with two links interconnecting the devices.
3_NODE_SINGLE_LINK_TOPO

3 nodes connected in a circular topology with at least one link interconnecting devices.

6.4.2 Objective Tags

SKIP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch) and csit-vpp-verify jobs (i.e. CSITpatch).
SKIP_VPP_PATCH

Test case(s) marked to not run in case of vpp-csit-verify (i.e. VPP patch).

6.4.3 Environment Tags

HW_ENV

DUTs and TGs are running on bare metal.
VM_ENV

DUTs and TGs are running in virtual environment.
VPP_VM_ENV

DUTs with VPP and capable of running Virtual Machine.
155 https://git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls1901_3

268 Chapter 6. CSIT Framework

https://git.fd.io/csit/tree/docs/tag_documentation.rst?h=rls1901_3

CSIT REPORT, Release rls1901_3

6.4.4 NIC Model Tags

NIC_Intel-X520-DA2

Intel X520-DA2 NIC.
NIC_Intel-XL710

Intel XL710 NIC.
NIC_Intel-X710

Intel X710 NIC.
NIC_Intel-XXV710

Intel XXV710 NIC.
NIC_Cisco-VIC-1227

VIC-1227 by Cisco.
NIC_Cisco-VIC-1385

VIC-1385 by Cisco.

6.4.5 Scaling Tags

FIB_20K

2x10,000 entries in single fib table
FIB_200K

2x100,000 entries in single fib table
FIB_2M

2x1,000,000 entries in single fib table
L2BD_1

Test with 1 L2 bridge domain.
L2BD_10

Test with 10 L2 bridge domains.
L2BD_100

Test with 100 L2 bridge domains.

6.4. CSIT RF Tags Descriptions 269

CSIT REPORT, Release rls1901_3

L2BD_1K

Test with 1000 L2 bridge domains.
VLAN_1

Test with 1 VLAN sub-interface.
VLAN_10

Test with 10 VLAN sub-interfaces.
VLAN_100

Test with 100 VLAN sub-interfaces.
VLAN_1K

Test with 1000 VLAN sub-interfaces.
VXLAN_1

Test with 1 VXLAN tunnel.
VXLAN_10

Test with 10 VXLAN tunnels.
VXLAN_100

Test with 100 VXLAN tunnels.
VXLAN_1K

Test with 1000 VXLAN tunnels.
TNL_1000

IPSec in tunnel mode - 1000 tunnels.
SRC_USER_10

Traffic flow with 10 unique IPs (users) in one direction.
SRC_USER_100

Traffic flow with 100 unique IPs (users) in one direction.
SRC_USER_1000

Traffic flow with 1000 unique IPs (users) in one direction.
SRC_USER_2000

Traffic flow with 2000 unique IPs (users) in one direction.

270 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

SRC_USER_4000

Traffic flow with 4000 unique IPs (users) in one direction.
100_FLOWS

Traffic stream with 100 unique flows (10 IPs/users x 10 UDP ports) in one direction.
10k_FLOWS

Traffic stream with 10 000 unique flows (10 IPs/users x 1000 UDP ports) in one direction.
100k_FLOWS

Traffic stream with 100 000 unique flows (100 IPs/users x 1000 UDP ports) in one direction.

6.4.6 Test Category Tags

FUNCTEST

All functional test cases.
PERFTEST

All performance test cases.

6.4.7 Performance Type Tags

NDRPDR

Single test finding both No Drop Rate and Partial Drop Rate simultaneously. The search is done by opti-mized algorithm which performs multiple trial runs at different durations and transmit rates. The resultscome from the final trials, which have duration of 30 seconds.
MRR

Performance tests where TG sends the traffic at maximum rate (line rate) and reports total sent/receivedpackets over trial duration. The result is an average of 10 trials of 1 second duration.
SOAK

Performance tests using PLRsearch to find the critical load.

6.4.8 Ethernet Frame Size Tags

64B

64B frames used for test.
78B

78B frames used for test.

6.4. CSIT RF Tags Descriptions 271

CSIT REPORT, Release rls1901_3

114B

114B frames used for test.
IMIX

IMIX frame sequence (28x 64B, 16x 570B, 4x 1518B) used for test.
1460B

1460B frames used for test.
1480B

1480B frames used for test.
1514B

1514B frames used for test.
1518B

1518B frames used for test.
9000B

9000B frames used for test.

6.4.9 Test Type Tags

BASE

Baseline test cases, no encapsulation, no feature(s) configured in tests.
IP4BASE

IPv4 baseline test cases, no encapsulation, no feature(s) configured in tests.
IP6BASE

IPv6 baseline test cases, no encapsulation, no feature(s) configured in tests.
L2XCBASE

L2XC baseline test cases, no encapsulation, no feature(s) configured in tests.
L2BDBASE

L2BD baseline test cases, no encapsulation, no feature(s) configured in tests.
L2PATCH

L2PATCH baseline test cases, no encapsulation, no feature(s) configured in tests.

272 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

SCALE

Scale test cases.
ENCAP

Test cases where encapsulation is used. Use also encapsulation tag(s).
FEATURE

At least one feature is configured in test cases. Use also feature tag(s).
TLDK

Functional test cases for TLDK.
DMM

Functional test cases for DMM.
TCP

Tests which use TCP.
TCP_CPS

Performance tests which measure connections per second using http requests.
TCP_RPS

Performance tests which measure requests per second using http requests.
HTTP

Tests which use HTTP.
NF_DENSITY

Performance tests that measure throughput of multiple VNF and CNF service topologies at differentservice densities.

6.4.10 NF Service Density Tags

CHAIN

NF service density tests with VNF or CNF service chain topology(ies).
PIPE

NF service density tests with CNF service pipeline topology(ies).
NF_L3FWDIP4

NF service density tests with DPDK l3fwd IPv4 routing as NF workload.

6.4. CSIT RF Tags Descriptions 273

CSIT REPORT, Release rls1901_3

NF_VPPIP4

NF service density tests with VPP IPv4 routing as NF workload.
{r}R{c}C

Service density matrix locator {r}R{c}C, {r}Row denoting number of service instances, {c}Column denotingnumber of NFs per service instance. {r}=(1,2,4,6,8,10), {c}=(1,2,4,6,8,10).

6.4.11 Forwarding Mode Tags

L2BDMACSTAT

VPP L2 bridge-domain, L2 MAC static.
L2BDMACLRN

VPP L2 bridge-domain, L2 MAC learning.
L2XCFWD

VPP L2 point-to-point cross-connect.
IP4FWD

VPP IPv4 routed forwarding.
IP6FWD

VPP IPv6 routed forwarding.

6.4.12 Underlay Tags

IP4UNRLAY

IPv4 underlay.
IP6UNRLAY

IPv6 underlay.
MPLSUNRLAY

MPLS underlay.

6.4.13 Overlay Tags

L2OVRLAY

L2 overlay.

274 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

IP4OVRLAY

IPv4 overlay (IPv4 payload).
IP6OVRLAY

IPv6 overlay (IPv6 payload).

6.4.14 Tagging Tags

DOT1Q

All test cases with dot1q.
DOT1AD

All test cases with dot1ad.

6.4.15 Encapsulation Tags

ETH

All test cases with base Ethernet (no encapsulation).
LISP

All test cases with LISP.
LISPGPE

All test cases with LISP-GPE.
VXLAN

All test cases with Vxlan.
VXLANGPE

All test cases with VXLAN-GPE.
GRE

All test cases with GRE.
IPSEC

All test cases with IPSEC.
SRv6

All test cases with Segment routing over IPv6 dataplane.

6.4. CSIT RF Tags Descriptions 275

CSIT REPORT, Release rls1901_3

6.4.16 Interface Tags

PHY

All test cases which use physical interface(s).
VHOST

All test cases which uses VHOST.
VHOST_256

All test cases which uses VHOST with qemu queue size set to 256.
VHOST_1024

All test cases which uses VHOST with qemu queue size set to 1024.
CFS_OPT

All test cases which uses VM with optimised scheduler policy.
TUNTAP

All test cases which uses TUN and TAP.
AFPKT

All test cases which uses AFPKT.
NETMAP

All test cases which uses Netmap.
MEMIF

All test cases which uses Memif.
SINGLE_MEMIF

All test caseswhich uses only singleMemif connection per DUT.OneDUT instance is running in containerhaving one physical interface exposed to container.
LBOND

All test cases which uses link bonding (BondEthernet interface).
LBOND_DPDK

All test cases which uses DPDK link bonding.
LBOND_VPP

All test cases which uses VPP link bonding.

276 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

LBOND_MODE_XOR

All test cases which uses link bonding with mode XOR.
LBOND_MODE_LACP

All test cases which uses link bonding with mode LACP.
LBOND_LB_L34

All test cases which uses link bonding with load-balance mode l34.
LBOND_1L

All test cases which uses one link for link bonding.
LBOND_2L

All test cases which uses two links for link bonding.
DRV_AVF

All test cases which uses Intel Adaptive Virtual Function (AVF) device plugin for VPP. This plugins providesnative device support for Intel AVF. AVF is driver specification for current and future Intel Virtual Functiondevices. In essence, today this driver can be used only with Intel XL710 / X710 / XXV710 adapters.

6.4.17 Feature Tags

IACLDST

iACL destination.
COPWHLIST

COP whitelist.
NAT44

NAT44 configured and tested.
NAT64

NAT44 configured and tested.
ACL

ACL plugin configured and tested.
IACL

ACL plugin configured and tested on input path.

6.4. CSIT RF Tags Descriptions 277

CSIT REPORT, Release rls1901_3

OACL

ACL plugin configured and tested on output path.
ACL_STATELESS

ACL plugin configured and tested in stateless mode (permit action).
ACL_STATEFUL

ACL plugin configured and tested in stateful mode (permit+reflect action).
ACL1

ACL plugin configured and tested with 1 not-hitting ACE.
ACL10

ACL plugin configured and tested with 10 not-hitting ACEs.
ACL50

ACL plugin configured and tested with 50 not-hitting ACEs.
SRv6_PROXY

SRv6 endpoint to SR-unaware appliance via proxy.
SRv6_PROXY_STAT

SRv6 endpoint to SR-unaware appliance via static proxy.
SRv6_PROXY_DYN

SRv6 endpoint to SR-unaware appliance via dynamic proxy.
SRv6_PROXY_MASQ

SRv6 endpoint to SR-unaware appliance via masquerading proxy.

6.4.18 Encryption Tags

IPSECSW

Crypto in software.
IPSECHW

Crypto in hardware.
IPSECTRAN

IPSec in transport mode.

278 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

IPSECTUN

IPSec in tunnel mode.

6.4.19 Client-Workload Tags

VM

All test cases which use at least one virtual machine.
LXC

All test cases which use Linux container and LXC utils.
DRC

All test cases which use at least one Docker container.
DOCKER

All test cases which use Docker as container manager.
APP

All test cases with specific APP use.

6.4.20 Container Orchestration Tags

K8S

All test cases which use Kubernetes for orchestration.
SFC_CONTROLLER

All test cases which use ligato/sfc_controller for driving configuration of vpp inside container.
VPP_AGENT

All test cases which use Golang implementation of a control/management plane for VPP
1VSWITCH

VPP running in Docker container acting as VSWITCH.
1VNF

1 VPP running in Docker container acting as VNF work load.
2VNF

2 VPP running in 2 Docker containers acting as VNF work load.

6.4. CSIT RF Tags Descriptions 279

CSIT REPORT, Release rls1901_3

4VNF

4 VPP running in 4 Docker containers acting as VNF work load.

6.4.21 Multi-Threading Tags

STHREAD

Dynamic tag. All test cases using single poll mode thread.
MTHREAD

Dynamic tag. All test cases using more then one poll mode driver thread.
1NUMA

All test cases with packet processing on single socket.
2NUMA

All test cases with packet processing on two sockets.
1C

1 worker thread pinned to 1 dedicated physical core; or if HyperThreading is enabled, 2 worker threadseach pinned to a separate logical core within 1 dedicated physical core. Main thread pinned to core 1.
2C

2 worker threads pinned to 2 dedicated physical cores; or if HyperThreading is enabled, 4 worker threadseach pinned to a separate logical core within 2 dedicated physical cores. Main thread pinned to core 1.
4C

4 worker threads pinned to 4 dedicated physical cores; or if HyperThreading is enabled, 8 worker threadseach pinned to a separate logical core within 4 dedicated physical cores. Main thread pinned to core 1.
1T1C

Dynamic tag. 1 worker thread pinned to 1 dedicated physical core. 1 receive queue per interface. Mainthread pinned to core 1.
2T2C

Dynamic tag. 2 worker threads pinned to 2 dedicated physical cores. 1 receive queue per interface. Mainthread pinned to core 1.
4T4C

Dynamic tag. 4 worker threads pinned to 4 dedicated physical cores. 2 receive queues per interface.Main thread pinned to core 1.
2T1C

280 Chapter 6. CSIT Framework

CSIT REPORT, Release rls1901_3

Dynamic tag. 2 worker threads each pinned to a separate logical core within 1 dedicated physical core.1 receive queue per interface. Main thread pinned to core 1.
4T2C

Dynamic tag. 4 worker threads each pinned to a separate logical core within 2 dedicated physical cores.2 receive queues per interface. Main thread pinned to core 1.
8T4C

Dynamic tag. 8 worker threads each pinned to a separate logical core within 4 dedicated physical cores.4 receive queues per interface. Main thread pinned to core 1.

6.4.22 Honeycomb Tags

HC_FUNC

Honeycomb functional test cases.
HC_NSH

Honeycomb NSH test cases.
HC_PERSIST

Honeycomb persistence test cases.
HC_REST_ONLY

(Exclusion tag) Honeycomb test cases that cannot be run in Netconf mode using ODL client for Restfconf-> Netconf translation.

6.4. CSIT RF Tags Descriptions 281

Bibliography

[lxc] Linux Containers67
[lxcnamespace] Resource management: Linux kernel Namespaces and cgroups68.
[stgraber] LXC 1.0: Blog post series69.
[lxcsecurity] Linux Containers Security70.
[capabilities] Linux manual - capabilities - overview of Linux capabilities71.
[cgroup1] Linux kernel documentation: cgroups72.
[cgroup2] Linux kernel documentation: Control Group v273.
[selinux] SELinux Project Wiki74.
[lxcsecfeatures] LXC 1.0: Security features75.
[lxcsource] Linux Containers source76.
[apparmor] Ubuntu AppArmor77.
[seccomp] SECure COMPuting with filters78.
[docker] Docker79.
[k8sdoc] Kubernetes documentation80.
[ligato] Ligato81.
[govpp] FD.io goVPP project82.
[vppagent] Ligato vpp-agent83.

67 https://linuxcontainers.org/68 https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf69 https://stgraber.org/2013/12/20/lxc-1-0-blog-post-series/70 https://linuxcontainers.org/lxc/security/71 http://man7.org/linux/man-pages/man7/capabilities.7.html72 https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt73 https://www.kernel.org/doc/Documentation/cgroup-v2.txt74 http://selinuxproject.org/page/Main_Page75 https://stgraber.org/2014/01/01/lxc-1-0-security-features/76 https://github.com/lxc/lxc77 https://wiki.ubuntu.com/AppArmor78 https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt79 https://www.docker.com/what-docker80 https://kubernetes.io/docs/home/81 https://github.com/ligato82 https://wiki.fd.io/view/GoVPP83 https://github.com/ligato/vpp-agent

282

https://linuxcontainers.org/
https://www.cs.ucsb.edu/~rich/class/cs293b-cloud/papers/lxc-namespace.pdf
https://stgraber.org/2013/12/20/lxc-1-0-blog-post-series/
https://linuxcontainers.org/lxc/security/
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
http://selinuxproject.org/page/Main_Page
https://stgraber.org/2014/01/01/lxc-1-0-security-features/
https://github.com/lxc/lxc
https://wiki.ubuntu.com/AppArmor
https://www.kernel.org/doc/Documentation/prctl/seccomp_filter.txt
https://www.docker.com/what-docker
https://kubernetes.io/docs/home/
https://github.com/ligato
https://wiki.fd.io/view/GoVPP
https://github.com/ligato/vpp-agent

CSIT REPORT, Release rls1901_3

[imagevar] Image parameter is required in initial commit version. There is plan to implement containerbuild class to build Docker/LXC image.
[TWSLink] TWS119
[dockerhub] Docker hub120
[fdiocsitgerrit] FD.io/CSIT gerrit121
[fdioregistry] FD.io registy
[JenkinsSlaveDcrFile] jenkins-slave-dcr-file122
[CsitShimDcrFile] csit-shim-dcr-file123
[CsitSutDcrFile] csit-sut-dcr-file124
[ansiblelink] ansible125
[fdiocsitansible] Fd.io/CSIT ansible126
[inteli40e] Intel i40e127
[pciids] pci ids128

119 https://wiki.fd.io/view/CSIT/TWS120 https://hub.docker.com/121 https://gerrit.fd.io/r/CSIT122 https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile123 https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile124 https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile125 https://www.ansible.com/126 https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible127 https://downloadmirror.intel.com/26370/eng/readme.txt128 http://pci-ids.ucw.cz/v2.2/pci.ids

Bibliography 283

https://wiki.fd.io/view/CSIT/TWS
https://hub.docker.com/
https://gerrit.fd.io/r/CSIT
registry.fdiopoc.net
https://github.com/snergfdio/multivppcache/blob/master/ubuntu18/Dockerfile
https://github.com/snergfdio/multivppcache/blob/master/csit-shim/Dockerfile
https://github.com/snergfdio/multivppcache/blob/master/csit-sut/Dockerfile
https://www.ansible.com/
https://git.fd.io/csit/tree/resources/tools/testbed-setup/ansible
https://downloadmirror.intel.com/26370/eng/readme.txt
http://pci-ids.ucw.cz/v2.2/pci.ids

	Introduction
	Report History
	Report Structure
	Test Scenarios
	Physical Testbeds
	Test Methodology

	VPP Performance
	Overview
	Release Notes
	Packet Throughput
	Speedup Multi-Core
	Packet Latency
	Comparisons
	Throughput Trending
	Test Environment
	Documentation

	DPDK Performance
	Overview
	Release Notes
	Packet Throughput
	Packet Latency
	Comparisons
	Throughput Trending
	Test Environment
	Documentation

	VPP Device
	Overview
	Release Notes
	Integration Tests
	Documentation

	VPP Functional
	Overview
	Release Notes
	Test Environment
	Documentation

	CSIT Framework
	Design
	Test Naming
	Presentation and Analytics
	CSIT RF Tags Descriptions

	Bibliography

